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Summary

To interpret the experimental results obtained by wide-ranging re-
search on vortex shedding by a cylinder, a formulation is proposed of a
quantum heory that is valid for all Newtonian fluids. The discovery has,
in fact, been made of a constant that is valid for all fluids, depending on
kinematic viscosity, which has important applications in the hydrody-
namic field, comprising transition to turbulence, vortex shedding under
critical and subcritical conditions, and some of the phenomena present
in the viscous boundary layer.

Introduction

The study of turbulence still includes unsolved problems. Despite
this, the introduction of supercomputers will make it possible to im-
prove our knowledge, starting with the direct numerical integration of
basic equations. At present, we can interpret the experimental data using
models and theories that are called phenomenological, even if these too
are based on the fundamental principles of dynamics and physics. Typi-
cal examples of this are the wall law of Prandtl and Von Karman, which
depends on an analogy with the kinetic theory for gases. This law, which
corresponds very closely to experimental data, has been successfully ap-
plied throughout the last century to various fields within hydraulics and
fluid mechanics. Starting in the early 1980s, the present author had an
intuitive conviction that certain features of turbulence follow a quantum
pattern; this hypothesis had first been put forward by Levi (1983), but
unfortunately that formulation comprised notable inner contradictions,
so that it could not be applied; a quantum theory, in fact, requires a
fundamental constant whose value must be determined experimentally.
Working at the Institute of Hydraulics, University of Pisa, the present
author has therefore undertaken a broad experimental investigation on
vortex shedding which has led to the discovery of that constant. As is
well known, the simplest source of vorticity found in nature is a uni-
form flow about a circular cylinder at supercritical Reynolds numbers.
This cylinder will then shed a double wake of vortices, and an instru-
ment placed downstream will record an almost sinusoidal signal whose
spectrum contains a single band with a Strouhal frequency. This topic
has been studied by various authors, among whom we will recall only
the most important: Roshko (1954), Tritton (1971) and Friehe (1980).
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However, these papers do not make clear the triggering mechanism of
this phenomenon once Reynolds’s critical number, which is about 50,
has been reached. During the last few years, therefore, an extensive
experimental enquiry has been carried out, and its results have already
been published (Buffoni 1993, 1995, 1996, 1997). These results, not from
a wish for originality, but to reflect the experimental facts, have been
developed into a coherent theory, which possesses a considerable fore-
casting capability; in this way the phenomenon itself, which had been
rather difficult to understand, turns out to be simple.

Experimental Apparatus

A device able to support cylinders of various diameters was inserted
in an open channel with walls of glass, 9 m long and 50 cm wide, set
up in Laboratory No.1 of the Hydraulics Institute. The channel received
water from a tank placed on the piezometric tower; the tank had a filling
channel which was quite long, to ensure a regular flow. The shedding
of vortices was recorded by Dantec’s LDA system (containing a coaxial
lens and a Bragg’s cell) consisting of a 5 mw He-Ne laser mounted on
a manual traversing system. The photomultiplier, with forward scatter,
was connected to the frequency-shifter and the tracker. The analogic
signal from the tracker was sent to the acquisition card of a PC. The
data were processed by software supplied by Dantec. While these exper-
iments were being carried out, the vortex filaments were visualised by
means of the usual hydrolysis technique (Buffoni 1995, 1996). During the
second phase, using an appropriate device, vortex shedding was studied
for Reynolds numbers below the critical value. At an earlier stage, it
had been discovered that it was possible to achieve shedding under sub-
critical conditions, by making the cylinder vibrate transversally, with a
low amplitude and a suitable frequency. As a result, a trolley on rails
was planned and constructed with great care and precision; the cylinder,
attached to the trolley, was made to vibrate at a predetermined ampli-
tude and frequency, which was measured by a Ono-Sokki LD 1100S-005
(using infrared beams) vibrometer and a Tektronics 504A frequency me-
ter. In this case too, through visualisation, it was possible to check the
formation of vortex filaments, which disappeared as soon as the trolley
came to a halt (Buffoni 1997).

During the third phase, the images of particles suspended in the fluid
were recorded, so as to make available, for future reference, information
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on the real circulation generated. The experimental apparatus consisted
of a trolley running on rails set about 1.50 m apart, while the electronic
control unit was able to regulate the speed of the trolley. The cylinder,
which was attached to it, moved under fluid in a pool of still water. The
velocity field was illuminated by an intermittent light sheet obtained by
a He-Ne laser and a cylindrical lens. Particles of TiO2 or, alternatively,
glass microspheres, with a silver surface and a diameter of 10 µm, were
added to the water. The images were recorded with a CCD SBIG ST5
camera and sent to a PC. Afterwards, measurement of the coordinates
of points (measurements similar to those made in astrometry) could be
performed.

Experimental Results

On the basis of over two hundred completed experiments, a notable
dispersion was discerned, as is well known, in the first phase, if the
data are displayed, diagrammatically showing the number of Strouhal
against that of Reynolds. On the other hand, the results reveal a marked
linearity if they are plotted with the shedding frequency as a function
of the velocity of flow. As a result, the following linear law, which has
never been presented in this form before, turns out to be in excellent
agreement with the experimental data (Fig. 1), both for high and for
low Reynolds numbers, with general validity (Buffoni 1995, 1996):

U − U0 = 2παd(f − f0) (1)

where α = π/4 indicates the angular amplitude (Buffoni 1999), f the
shedding frequency, d the diameter of the cylinder, and f0 and U0 the
critical values for frequency and velocity respectively, giving rise to the
phenomenon. They are given by the following empirical relationship:

U0 = 49
ν

d
(2)

f0 = 0.12
U0

d
(3)

Thus, through equations (1),(2) and (3), we are able to forecast the
frequency of vortex shedding for a generic cylinder in any flow condition.
In addition, analysis of critical values gives the following equation:
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U2
0 = 406νf0 (4)

where ν is the kinematic viscosity of the fluid. Besides, Taylor’s hypoth-
esis on the dragging of turbulence at the mean flow velocity, allows us
to derive from (4) the wavelength λ0, in other words the space between
two successive vortices:

λ0 = 406
ν

U0
. (5)

In the second phase of the experiments, under subcritical conditions,
that is, when U < U0, the phenomenon no longer occurs spontaneously,
but it is still possible to achieve vortex shedding by making the cylinder
vibrate at a frequency of f . The most intensive spectrum band appears
when frequency, velocity and critical velocity are correlated according to
the following equation:

U2 = 406νf − L (6)

where L = (U − U0)2 . By now attentive readers will have noted a
close analogy, even if a formal one, between (6) and the photoelectric
effect. The recording of images with a CCD camera allows us to ac-
quire an explanation of the fact that vortex filament are shed only with
Reynolds numbers over 25. For values lower that these, the pair of sta-
tionary vortices located downstream, with respect to the cylinder, are
small (Fig. 2). In the following section we will see how the previous
empirical equations can be explained in terms of an effective, coherent
quantum theory.

Basic Equations

In a Newtonian fluid, with a kinematic viscosity ν, the equations of
Navier-Stokes hold; using the summing convention, they can be written
in the following tensorial form (i, j = 1÷ 3):

1
%

∂p

∂xi
+ uj

∂ui

∂uj
+

∂ui

∂t
= ν

∂2ui

∂xj∂xj
(7)

For null pressure gradients, the three previous equations, in very
slow motion approximation, are reduced to the Fourier equation that
gives solutions valid for phenomena that spread through space without
any wave propagation. If, on the other hand, we consider a point outside
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the boundary layer, where the gradients of the transverse velocity are
null, or within the viscous sub-layer where they are constant, the right-
hand side in equations (7) is null, and the first one is reduced to Euler’s
equation:

∂u

∂t
= −u

∂u

∂x
(8)

which constitutes Taylor’s hypothesis on turbulence dragging by mean
flow. By deriving both sides of the equation, first with respect to x and
then with respect to time, on the basis of the theorem on the reversibility
of the order of derivation, we obtain D’Alembert’s linear equation:

∂2u

∂t2
= U2 ∂2u

∂x2
(9)

where U indicates the phase velocity equal to mean flow velocity. In
this way Taylor’s hypothesis is justified, as the solutions of (9) centre
on (x− Ut), and indicate fluctuations that are dragged downstream by
the flow itself. In general terms it may be postulated that (8) takes the
form:

∂ui

∂t
= −ui

∂ui

∂xi
, (10)

which enables (9) to be formulated in general terms, on the hypothesis
of the isotropy of the phase velocity:

∂2u

∂t2
= U2 52 u. (11)

For a predetermined value of x, the solution of (9) is reduced to a
sinusoid:

u(t) = aeiωt . (12)

In addition, this accounts for the linearity of the experimental results
and the introduction by Levi (1983) of the model of a classic oscillator.
Equation (12) does, in fact, also express the solution for a harmonic
oscillator which has amplitude a and angular frequency ω. For such an
oscillator, the kinetic energy E and potential energy V , with reference
to the unity of mass, can be expressed by:
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E =
1
2
U2 (13)

V =
1
2
a2ω2. (14)

Moreover, mean energy, kinetic energy and potential energy are equal,
so that total mean energy T can be expressed by:

T = U2 = a2ω2. (15)

Thus, considering the proportionality coefficient α between the oscil-
lation amplitude and the cylinder’s diameter d, we obtain the result:

U = 2παdf. (16)

If we now introduce the minimum values U0 and f0 above which vor-
tex shedding occurs - values given by the empirical equations (2) and (3)
- we then obtain the general equations (1) in line with the experimental
data. The critical value U0 and f0 cannot be explained by the model of
the classic oscillator; one must first introduce the quantisation hypothe-
sis, that is, the energy of the oscillator is not continuous, but distributed
at discrete levels.

Cell dimensions in the phase space

The phase space comprises six dimensions, three spatial coordinates
xi and three velocity components ui. To carry out a statistical analysis
on the system’s state of movement, this space must be divided into
small cells and the points that represent the system which fall within
each cell must be counted. The size of each cell is arbitrary for a perfect
fluid; it is determined on the basis of purely practical considerations.
On the other hand, for a Newtonian fluid at a given temperature, and
hypothetically, subject to turbulent movement, the volume of the cells
must be (i = 1÷ 3):

4xi 4 ui ≥ Rν (17)

which is the condition for there to be turbulence; when there is equality,
the equation expresses transition. R stands for a critical Reynolds num-
ber which, when multiplied by the kinematic viscosity ν, gives the value
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of the constant. The volume of the cells cannot be arbitrary, because, if
(17) is not satisfied, that is, if their volume turns out to be lower than
the constant, one is considering zones of fluid in laminar motion. As can
be seen from equation (5), experience suggests that transition occurs
through oscillations of length λ correlated with velocity by the following
equation (analogous with De Broglie’s equation):

λ =
kν

u
(18)

where k represents a universal constant that is valid for all Newtonian
fluids. Due to the fact that we are dealing with wave phenomena, we
will consider Fourier’s fundamental theorem, which states that between
the length 4x of a wave packet and the corresponding spectrum band
4κ, the following relationship holds:

4xi 4 κi ≥ 1
2

(19)

where κ = 2π/λ indicates the wave number.
By introducing the wave number in (18) and giving this value in (19)

we obtain:

4xi 4 ui ≥ kν

4π
. (20)

The universal constant k, at the present state of knowledge, has a
value of 2,550, as a result of which constant R in (17) has a value of
203. The constant that is characteristic of a given Newtonian fluid can
be indicated by k = kν which has the dimensions of an action per unit
of mass. If we indicate that kø = k/2π (20) will take on the following
form:

4xi 4 ui ≥ kø

2
, (21)

so that the constant k/2π is equal to 406. The physical meaning of
(20) and (21) is as follows: given a fluctuation velocity 4u, the energy
supplied by mean movement is insufficient to obtain wave packets with
dimensions below 4x; the viscosity of the fluid does not permit this.
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The Wave Equation

Velocity u satisfies D’Alembert’s equation (11), according to which
the kinetic energy of the fluid is proportional to u2 at every point. So,
by analogy, we may posit a wave function ψ, which will generally be
complex, called ”probability amplitude”, such that its module square
ψψ∗ does not express energy, but a density of probability. The problem,
therefore, is not that of knowing the real value of the energy, but the
probability that, at certain point in the field of movement, there will be
a spontaneous fluctuation, or burst. What is introduced here, then, is a
probability conception of hydrodynamics. Under critical conditions the
event will take place at some point in the movement field; as a result,
the probability P over the whole domain Ω occupied by the fluid will
be:

P =
∫

Ω

ψψ∗dΩ = 1 (22)

which represents the normalisation condition. The wave function ψ itself
satisfies D’Alembert’s equation as expressed in the general form:

52ψ =
1

U2

∂2ψ

∂t2
. (23)

If we try to find a solution that is independent of time, a sinusoid can
be introduced into (23); ψo will then only be a function of the spatial
coordinates, so giving us the result:

52ψo + κ2ψo = 0. (24)

Introducing De Broglie’s equation λ = k/u and supposing that the ki-
netic energy U2/2 = (E − V ), we obtain:

52ψo +
2
k2
ø

(E − V )ψo = 0. (25)

Lastly, adding the Hamilton’s operator:

Hop = −k2
ø

2
52 +V (26)

we obtain the definitive result:

Hopψo = Eψo (27)
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that is, Schödinger’s equation independent of time and valid only for
monochromatic waves. To obtain this in a general case, we can utilise
the expression for the wave function:

ψ = ψoe
−i E

kø
t .

We can now derive this expression with respect to time:

∂ψ

∂t
= −i

E

kø
ψ.

In addition, ψ must satisfy the equation:

52ψ +
2
k2
ø

(E − V )ψ = 0.

Eliminating energy E from these two last equations, we obtain:

−k2
ø

2
52 ψ + V ψ = ikø

∂ψ

∂t
(28)

that is, Schödinger’s temporal equation, which is, therefore, valid for any
wave.

By now the reader will already have recognised that equations (21)
and (24) are analogous with Heisenberg’s inequality and with Schödinger’s
equation for quantum mechanics, respectively; the analogy is only for-
mal, as it is clear that we are in the field of macroscopic phenomena
independent of Planck’s constant. However, for a Newtonian fluid at a
certain temperature, there is a constant k dependent on viscosity, which
governs the phenomenon.

Equation (24) has been successfully applied to the transition to tur-
bulence in main inner motions (Buffoni, 1995); in the next section it will
be used to explain the triggering mechanism for vortex shedding.

The Quantised Oscillator

Wave equation (25) is valid for a harmonic oscillator with an angular
frequency ω, where the potential energy is:

V =
1
2
ω2x2

This is a Sturm-Liuville problem; once solved, it supplies the succes-
sion of eigenvalues or energy levels of the oscillator itself:



18 Enzo Buffoni

εn = køω(
1
2

+ n) (29)

where n = 0, 1, 2, 3..., and the corresponding eigenfunctions:

ψn(x) =
(

ω

πkø

) 1
4 1√

2nn!
e−

ω
2kø

x2

Hn

(
x
√

ω

kø

)
(30)

where Hn, are the Hermite polynomials. Furthermore the probability
density is given by:

pn(x) = ψ2
n.

The first case, with n = 0, is shows in Fig. 3; in comparing this with
Fig. 2a, it may be noted that where the probability density is not equal
to zero, a couple of stationary vortices really exist. The eigenvalues are
found at a series of intervals - each successive interval an incremental
multiple of the first - from the quantity køω, which does, in fact, repre-
sent the energy quantum. In addition, for (29) the energy levels of the
oscillator become more and more closely clustered as k becomes smaller,
and as, therefore, ν too becomes smaller, until continual energy returns
in the case of a perfect fluid. When the system turns out to be unstable
at a given level, it falls back to an immediately lower one, giving off a
quantum of energy, køω; the phenomenon of vortex shedding is therefore
due to the transition between two consecutive energy levels. In general,
the most probable excited level is the first, that is, with n=1; as a result,
transition mainly occurs between this and the fundamental level. If we
remove from (29) the energy of the fundamental state, we obtain the
series:

εn = køωn (31)

where n = 1, 2, 3... On the hypothesis that a vortex shedding takes place
with frequency f equal to the angular frequency ω:

εn = køfn. (32)

In the fundamental state (n = 1) we therefore obtain:

ε = køf (33)
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where ε = U2. Equation (33) represents the energy quantum, that is,
the minimum amount of energy that must be supplied to the system for
the phenomenon begin. The constant k = 406ν is in full agreement with
the experimental results expressed by equation (4), as can be noted in
figure 4.

The oscillator can enter into various different states, each of which
has an energy equivalent. It is, therefore, necessary to evaluate the mean
energy possessed by the oscillator when it is in the most probable state.
We will not present the complete description given by Fermi (1934).
We will only give the results: the mean total energy ε for a quantised
oscillator in contact with a source of energy with a value of T is given
by the following equation:

ε =
køf

e
køf
T − 1

. (34)

If we allow the energy quantum to tend to zero, it may be observed
that ε tends to T . The mean energy approximates to the case of the
classic oscillator which, when in statistical equilibrium, has the same
energy as the source with which it is in contact. In concrete terms, for
mean energy values greater than the quantum køf , there is a substan-
tially classic form of behaviour, whereas for lower values it deviates from
the classic law according to equation (34). In the last analysis, vortex
shedding begins, and the critical state is, therefore, reached, when the
system possesses an energy quantum, that is, køf/T = 1. We may there-
fore use equations (34) and (15) in theoretically calculating the critical
values for frequency and velocity. In fact, taking into account (34) and
(15) (ε = T = a2ω2), for køf/T = 1 and a = d, we obtain the critical
frequency fo:

fo =
kø

(2πd)2(e− 1)
. (35)

In addition, as fo = U2
o /kø, we can now calculate the critical velocity

Uo:

Uo =
kø

(2πd)
√

e− 1
. (36)

The values calculated using equations (35) and (36) are in accordance
with the experimental data (Buffoni 1996). We can, however, make
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them dimensionless by calculating the critical numbers of Reynolds and
Strouhal:

Reo =
k/2π

2π
√

e− 1
= 49 (37)

Sto =
1

2π
√

e− 1
= 0.12, (38)

in full accordance with all known experiments.
In subcritical conditions, that is, for velocity U < Uo, the phe-

nomenon does not occur spontaneously, but it is possible to achieve
vortex shedding by making the cylinder vibrate at an appropriate fre-
quency. The previously stated equation (33) must therefore be modified
to take account of the work L needed to reach the critical state:

ε = køf − L (39)

where f indicates both the shedding frequency and the frequency at
which the cylinder is made to vibrate. In other words, to obtain vortices
dragged by the flow and, therefore, with total mean energy ε = U2,
what must be supplied is a quantum of energy diminished by the work
L needed to extract them. The work of extraction or, more simply, the
work required to reach the critical state, is:

L = (Uo − U)2. (40)

In this case too the constant kø = 406ν is in excellent agreement with
the experimental data, as can be seen from the empirical equation (6)
and from figure 5.

The Oscillations Spectrum in the Boundary Layer

In the viscous boundary layer, there may be oscillations with a con-
tinuous spectrum. We may think of innumerable oscillators with total
energy distributed among them. Therefore, to calculate the number of
these oscillators, which have a frequency lying between f and f + df , we
will utilise phase space, especially space of the momenta q. The number
of systems, in this case oscillators possessing momenta q, will be equal to
the volume differentiating the two spheres with radius q and q +dq, that
is, 4πq2dq. It is already known that the calculation gives the number of
oscillators whose frequency falls between f and f + df :
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dN =
8π

υ∗3
f2df. (41)

Thus dN represents the number of oscillators belonging to the frequency
interval df , so that if their mean energy is T = υ∗2 , where υ∗ stands for
shear velocity, it will be true that the energy contained in that interval
will be dε = TdN , that is:

dε =
8π

υ∗3
Tf2df (42)

but as dε = u(f, T )df , the energy spectrum included within the boundary
layer is:

u(f, T ) =
8π

υ∗3
Tf2. (43)

This equation is analogous with that obtained by Rayleigh and Jeans
for classic electromagnetic radiation. The spectrum defined by (43) may
be in agreement with the experimental data only for low frequency levels;
(43) is, in fact, a rising monotone function, and its integral, that is, total
energy over all frequencies, is infinite, which is clearly absurd. The
situation is therefore similar to that encountered in the beginning of the
century 1900s when Planck, to solve the problem of radiation from a
black body, introduced the hypothesis of quanta. In this case too one
must use a quantum oscillator, the only difference being that, as this
is a macroscopic phenomenon, it does not depend on Planck’s constant,
but on the universal constant that is valid for all Newtonian fluids: k =
2, 550ν. Using the quantum hypothesis, the count of the number of
oscillators falling in the interval between f and f + df does not change;
all that changes is the mean energy, which must now be expressed by
(34), so that energy per volume unit within the boundary layer is:

u(f, T ) =
8π

υ∗3
kf3

e
kf
T − 1

. (44)

This differs from Planck’s formula only in terms of the constant k.
As may be seen from figure 6, (44) has a maximum value, and the area
subtended by the curve, that is, total energy for all frequencies, has a
finite value. The maximum frequency is given by the equation:

fmax = α
T

k
(45)
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where α is the root of the equation:

(3− α)eα = 3,

whose solution is α = 2.821, so that from (45) we now obtain:

λ+ =
λmaxυ∗

ν
= 904. (46)

It may be noted (45) is analogous with the Wien shift law. Many
authors note that in the boundary layer there are helicoidal structures
called ”rolls” whose dimensionless length is 800 ≤ λ+

x ≤ 1, 000, which is,
in fact, compatible with equation (46). In the boundary layer, contrac-
tions within these rolls produce velocity fluctuations corresponding to
the maximum value of the spectrum given by the quantum theory. The
wave length of the rolls, in a direction transversal to the motion λz, has
a value between 100 ≤ λz ≤ 300, and is therefore in accordance with
equation (17).

Conclusions

While we have been waiting for supercomputers capable of solving
the Navier-Stokes equations, a large-scale experimental research project
has been carried out at this Hydraulics Laboratory, with the aim of
understanding the simplest source of vorticity in nature - a cylinder
immersed in a uniform flow -. While this research was under way, four
discoveries, each so far unreported and unanticipated, have been made.
The first innovation consists of the general law (1), which is valid for any
Reynolds number and can be derived from the model for the harmonic
oscillator.

The second comprises the application of the theory of quanta to the
oscillator; surprisingly, it is able to account for the critical values for
the onset of the phenomenon. The energy of the oscillator cannot be
continuous; it has discrete values, so that the quantum hydrodynamics
must be considered. The third, which has a number of possible practical
applications, refers to the possibility, for Reynolds numbers below the
critical one, of obtaining vortex shedding by means of an appropriate
transversal vibration of the cylinder.

The fourth innovation is the discovery of equation (39), which ex-
presses the relationship between the energy of the flow affecting the
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oscillator and the energy quantum as reduced by the work needed to re-
turn the system to a critical condition. In other words, the mean value
of the energy possessed by the vortices is equal to the energy quantum,
less the work needed to extract them.

The results of these discoveries is that of making intelligible the mech-
anisms that initiate the turbulence generated by a single source. This
model can successfully be applied to many sources, and, therefore, to
many oscillators that have a continuous spectrum, instead of a band
spectrum. As seen above, a phenomenon of this type is found in the
viscous boundary layer.

Thus the quantum Hydrodynamics of Newtonian fluids has a solid
foundation in nature, and may lead to important developments.
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