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Summary

This work takes up the fluid mechanics scheme first proposed by Lud-
wig Prandtl, according to which a fluid in turbulent motion is represented
by a sort of gas made up of many particles interacting inelastically. For
such a set of quasi-particles it can be shown that the Maxwell-Boltzmann
distribution holds, whether one considers only one component of the ve-
locity, or the full three-dimensional case. However, when the incidence
of viscosity grows, such classical statistical analysis must instead be re-
placed by Bose-Einstein quantum statistics, for which a universal quanti-
sation constant, determined in the author’s Hydraulics Laboratory, has
been found to be valid for all Newtonian fluids. By applying such a
quantum statistical approach to the limit layer, the spectrum of velocity
oscillations can be determined, thereby providing an explanation of the
formation of ripples on an initially flat bottom.

Classical and quantum statistics

In 1925 L. Prandtl first introduced the perfect gas model to explain
the behaviour of a real fluid in turbulent motion (Prandtl 1952). In
fact, at small scales, turbulence is constituted by vortices that can be
likened to a set of particles. Initially, these maintain their own indi-
viduality, but subsequently yield the momentum by mixing with other
surrounding particles. Therefore, we can apply statistical analysis to
this population of quasi-particles. In classical statistics, what is consid-
ered is a specific parameter, which must be discretized by dividing its
possible values into a finite number of intervals and finally arriving at a
count of the elements found in each of these intervals. The disctretizing
operation is however usually quite arbitrary, the size of the chosen range
generally being dictated by practical considerations alone. This involves
some risks: if too large an interval is adopted, resolution is lost, while if
instead very small ranges are used, the drawback arises of finding very
few elements and therefore obtaining very scattered values. Nevertheless,
as will be seen, it is sometimes useful to consider infinitesimal intervals.
If, on the other hand, the energy is quantized, the intervals are already
defined, as has been seen for harmonic oscillators (Buffoni 1996), and the
discretization becomes natural and no longer arbitrary, as in the forego-
ing case. At the limit state, when the intervals are exceedingly narrow
(that is viscosity ν → 0), such treatment reverts to a classical statistical
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approach. However, the manner in which the division is performed is
not the only difference between the classical and quantum statistical ap-
proaches. The two approaches also differ in the procedure for counting
the number of states assumed by the system (Buffoni 1999). By way of
example, let us suppose there are two distinct elements, a and b, which
may exist in only two states, corresponding to two energy levels, 1 and
2. (By state, we mean the distribution of the elements in the two differ-
ent discrete intervals.) In such a case, we will have two elements in the
first interval and none in the second; then two cases (by switching a and
b) corresponding to one element in the first and one in the second, and
finally none in the first state and both in the second. There are thus four
possible ways to arrange the two particles and, therefore, four accessible
states. Note that while the two particles, a and b, are distinguished one
from the other, we are not concerned with the order in which they are
arranged within the single state. Obviously, this presumes, at least in
principle, that we are able to distinguish the individual elements. If this
were not possible, then the number of states would clearly be reduced.
In fact, in the preceding example we would have indistinguishable ele-
ments a and a , and the accessible states would, in effect, be only three
(two elements in the first interval; one in the first and the other in the
second, both elements in the second), as the two elements could not be
differentiated one from the other. The first way of proceeding corre-
sponds to Maxwell-Boltzmann statistics, while the latter is adopted in
Bose-Einstein statistics.

Boltzmann statistics

Let us consider a large number of independent systems (oscillators
or quasi-particles) in statistical equilibrium with a source that has mean
energy T , in such way that n1 is found on level ε1, n2 on ε2 and ni on εi.
Such a distribution on discrete levels can be obtained in the case of quan-
tized energy, but also through classical statistical procedures by dividing
the total energy into a finite number of intervals, thereby obtaining the
same result. Of the many distributions that the system may assume over
the various energy levels, we aim to calculate the most probable, which
will therefore be that occurring most frequently in nature. Specifically,
given a system in equilibrium with a source of mean energy T , and able
to assume the discrete energy levels:
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ε1, ε2, ε3...εi

ask what the probability is that one of them be found on any given level
εi. Alternatively, the problem can be framed in an entirely equivalent
method by considering a very large number of independent systems, all
in equilibrium with a source with energy T , and searching for the most
probable number to be found on any given level εi, It can easily be shown
that the most probable number of elements ni assuming energy level εi,
is given precisely by Boltzmann statistics (Fermi, 1934):

ni = Ae−
εi
T . (1)

Maxwell distribution

Boltzmann statistics (1) can be used to determine the actual dis-
tribution of the kinetic energy of N particles contained in the volume
corresponding to one unit of mass. In classical statistics there is no size
limitation on the cells in the phase space. Therefore, let us consider the
space of momentum that coincides with that of the velocities and divide
it into infinitesimal sub-cells in such way that their number is equal to
the volume. We consider the volume contained in two spheres of radius
u and u+du precisely because we are looking for the number of particles
having a kinetic energy per unit mass between ε and ε+dε. The relation
between ε and u is:

u2 = 2ε (2)

and we therefore have:

du =
√

2
2

ε−1/2dε. (3)

The volume between two spheres in the velocity space will be:

4πu2du. (4)

Therefore, the number of sub-cells becomes:

4π
√

2
√

εdε. (5)
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However, in every cell there are N particles, varying as a function of
the energy according to Boltzmann statistics (1), for which their total
number will be:

dN = 4πA
√

2
√

εe−
ε
T dε, (6)

where T = u2. As each particle possesses an energy equal to ε, we have
the infinitesimal total energy interval dE:

dE = 4πA
√

2ε3/2e−
ε
T dε. (7)

dE/dε represents precisely the distribution function, that is, the num-
ber of particles whose kinetic energy is within the interval ε to ε + dε.
Constant A remains to be calculated, and to this end we impose the
normalization condition:

4πA
√

2
∫ ∞

0

√
εe−

ε
T dε = 1. (8)

By setting x = ε/T and therefore dε = 2Txdx, the integral of the pre-
ceding relations yields:

2T 3/2

∫ ∞

0

x2e−x2
dx =

√
π

2
T 3/2 (9)

and, in conclusion, by substituting this into (7) we obtain:

A =
(

1
2πT

)3/2

. (10)

Therefore, from (7) we have derived function F , that is, the proportion
of the N particles contained in one mass unit that has a kinetic energy
value between ε and ε + dε:

F (ε, T ) =
2√

πT 3/2
ε3/2e−

ε
T . (11)

As this distribution was first derived via a different procedure by Maxwell
in 1859, it has come to be known as the Maxwell distribution. It is often
expressed as a function of velocity. In fact, if, as by convention, we
express the volume of the velocity space as:

4πu2du, (12)
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the number of the sub-cells contained in this volume will be:

dN = 4πAu2e−
u2
2T du. (13)

Once again, in order to calculate constant A, we apply the normalization
condition:

4πA

∫ ∞

0

u2e−
u2
2T du = 1, (14)

which yields:

A =
1

(2πT )3/2
(15)

and the Maxwell distribution expressed in terms of velocity finally
becomes:

F (u, T ) =
√

2√
πT 3/2

u2e−
u2
2T . (16)

The case of a single component of velocity

Available instruments often allow measuring only one velocity com-
ponent at a time. It is therefore useful to consider the statistics of one
component of the velocity in isolation. In this case (still referring to one
mass unit), the space of the momentum reduces to the space of the veloc-
ities and, given the arbitrariness of the cells’ dimensions, we can divide
this space into sub-cells of infinitesimal size. The number of accessible
states therefore comes to coincide with the volume u and the number of
sub-cells will be simply du. According to Boltzmann statistics (1), each
sub-cell contains a number of particles, dN , by which, in conclusion, we
obtain:

dN = Ae−
u2
2T du. (17)

We must still determine constant A via the normalization condition:
∫ ∞

−∞
Ae−

u2
2T du = 1, (18)

from which it is a simple matter to arrive at:
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A =
1√
2πT

. (19)

Therefore, the fraction of N particles whose velocity component lies on
the interval between u and u + du will be:

n(u, T ) =
1√
2πT

e−
u2
2T . (20)

As can be gathered, the foregoing represents a Gaussian distribution
with variance σ2 = T .

Quantum statistics

A Newtonian fluid at low Reynolds numbers have a quantum be-
havoiur, as has been encountered in the separation of vortices under
critical and subcritical conditions (Buffoni, 1996, 1997, 1999), for which
the universal quantization constant, valid for all fluids, was determined
to be ko = 2, 550ν (where ν indicates the kinematic viscosity). In this
case, the quasi-particles are in principle indistinguishable, and Boltz-
mann statistics give way to Bose statistics (Fermi 1934):

ni =
Qi

Ae
εi
T − 1

, (21)

which for Aeε/T >> 1, reduces once again to classical Boltzmann statis-
tics. Qi is none other than the number of the quantum states, though,
due to the limitation on the cells in the a count can no longer be arrived
at as in the classical case. In fact, their volume can no longer be con-
sidered infinitesimal, but equal to ko for one dimension, and k3

o3 for the
three-dimensional case. This leads to the Bose-Einstein distribution for
a single velocity component:

nE(u, T ) =
1

ko(Ae
εi
T − 1)

, (22)

while in three dimensions, we have:

FE(u, T ) =
4π

k3
o

u2

Ae
εi
T − 1

, (23)
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In both cases, constant A is determined via the normalization condi-
tion, and the corresponding integral can be calculated either numerically
or through a powers series.

Experimental checks

With the aim of verifying the foregoing theoretical formulations, we
used customary single-component LDA techniques to measure the tur-
bulence in a standard magnetic agitator in which the composition of the
fluid used was varied: pure water; a 50% mixture of glycerin and water;
and finally pure glycerin maintained via an electronic control system at
a constant temperature of 100C ±1. The relative viscosity was deter-
mined with the Guzman-Andrade equation. The velocity data obtained
thereby were processed statistically in order to compare them with the
results of the foregoing theoretical formulations. The results for the most
significant cases are shown in the figures: water (fig. 1), the 1:1 glycerin
+ water mixture (fig. 2) and pure glycerin maintained at 100C (fig. 3).
The results from classical Maxwell-Boltzmann statistics (20) are repre-
sented by the dashed line, while those relative to Bose-Einstein (22) by
the continuous line; finally, the gray line shows the relative experimental
histogram. Each histogram also shows the mean velocity in the direction
of flow, the mean quadratic deviation, the kinematic viscosity, constant
A and, finally, the value of the integral of the Einstein distribution in
order to highlight compliance to the normalization condition. For low-
viscosity fluids, such as water, the classical Maxwell distribution clearly
holds (fig. 1). As for the others (fig. 2, 3), the difference between the
classical theory of Maxwell (20) and the Bose-Einstein quantum theory
(22) is modest, the discrepancy being roughly 8Although variations in
experimental data often preclude deciding which of the two is valid, it is
nevertheless safe to say that the data does not contravene the quantum
hypothesis.

The boundary layer spectrum

An important field of application of quantum statistics is viscous sub-
strata (Buffoni 1999). Let us therefore consider quantum quasi-particles
with energy ε = υ∗2 a momentum q = kof/υ∗, where υ∗ indicates the
shear velocity. What we must determine is the number of energy quanta
whose frequency values are in the range f to f + df . Applying the Bose
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distribution (7) to the quntum gas of boundary layer we must bear in
mind that, because the particles are generated and absorbed continually,
their number is not conserved, and we therefore have A = 1. Hence, in
conclusion, wed obtain the spectrum, that is, the energy density per unit
time within in the interval df :

u(f, T ) =
8π

υ∗3
kf3

e
kf
T − 1

, (24)

which is Planck’s formula, where however the universal quantization
constant equals ko = 2, 550ν and holds for all Newtonian fluids (Buf-
foni 1999). The maximum value of (24) occurs in correspondence to
the wavelength λ = 904ν/υ∗. By Newton’s relation, such oscillations
generate a wide spectrum of tangential actions and therefore an initially
flat bottom of fine sand will first be deformed in small waves, though
subsequently higher energy waves will prevail until the ripples formed
exhibit a λ practically in conformity with the maximum value furnished
by expression (24). This quantum mechanism of ripples formation was
hypothesized by the author in the late seventies through a relation anal-
ogous to De Broglie’s (λ = const.ν/υ∗). Subsequently, it came to light
that Yalin had also arrived at this same relationship empirically, spec-
ifying a constant value of about 2,000 for the fully developed ripples,
and half that (i.e. 1,000) for those in the initial stages (Yalin 1977).
Further experimental studies performed at the Hydraulics Institute of
Pisa (Buffoni 1985, 1989) confirmed these values for low Reynolds num-
bers. Therefore, the quantum hypothesis finds a natural application in
explaining the origins of the ripples, for which it provides a simple model
for determining the spectrum of boundary layer oscillations underlying
their formation.
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