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Abstract 
The post-critical behaviour of a slender elastic structure under an assigned system of proportional 
loads is wholly disclosed by means of its equilibrium path. To achieve a uniformly accurate tracing of 
the path, incremental-iterative strategies use a variable step-length to adapt the sampling of points to 
the complexity of the curve. This paper illustrates a revised formulation of the ‘Admissible Directions 
Cone’ method, a particular arc-length procedure, in which an inequality constraint is added to the 
standard set of governing equations to limit the change in angle experienced by the tangent to the path 
in a step. The effectiveness of the method is demonstrated in severe circumstances, such as the 
examples presented here, concerning simple kinematically indeterminate truss structures, whose 
equilibrium paths are nevertheless characterised by bifurcation points at the origin and zero-load 
secondary branches. 
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1 Introduction 

Loss of equilibrium stability is no doubt the typical failure mode for a number of prevailingly 
compressed structural typologies, such as slender metal arches, continuum or reticulated shells, thin 
vaults and domes. This insidious sort of failure is destined to become more and more frequent as the 
use of new high-performance materials spreads. In these cases, the assessment of the ultimate bearing 
capacity of a structure cannot be limited to the mere determination of a buckling or snapping load. 
Instead, a complete non-linear analysis is needed, since even apparently simple structural systems 
often hide a surprisingly complex post-critical behaviour. 
The mechanical response of an elastic structure under proportional loading can be concisely 
represented by its equilibrium path, namely, the set of curves in the n+1-dimensional space spanned by 
the load multiplier, λ, and the generalised displacements, q1, q2, …, qn, of the discrete model. Each 
point of the path represents an equilibrium configuration assumed by the structure [1, 2]. 
Arc-length methods assume the curvilinear abscissa, s, as the representation parameter and perform a 
sampling of points at increasing values of it [3, 4, 5]. The early formulations used a constant parameter 
increment, or step-length, but this turns out to be inadequate when long and winding paths have to be 
traced accurately [6, 7, 8]. In these cases, according to the degree of imperfection of the structural 
system, the paths exhibit a wide gamut of post-critical behaviour, including simple and multiple 
bifurcation, snapping, sharp turning points, loops and so on. So, small step-lengths lead to inefficient 
and demanding computation, while large values may cause the algorithm to fail along arcs of greater 
curvature or in the neighbourhood of a bifurcation, due to undesired jumps onto the bifurcated branch. 
In [9], a method was presented where the step-length is suitably reduced whenever the changes in 
direction experienced by the unit tangent vector are greater than a given value. To this aim, an 
inequality constraint was added to the standard set of governing equation, in order to force the secant 
vector at each incremental step to lie inside a cone of admissible directions.  
The paper presents a revised formulation of the above method, where the step-length is either reduced 
or increased according to the complexity of the curve. The versatility of the method in tracing correctly 
the path in presence of sharp turning points or unexpected bifurcation points, permits the analyst to 
focus his attention to the mechanical aspects of the problem. The effectiveness of the method is 
demonstrated in severe circumstances, such as the examples presented here, concerning simple 
kinematically indeterminate truss structures, whose equilibrium paths are nevertheless characterised by 
bifurcation points at the origin and zero-load secondary branches [10]. 

2 Path-tracing strategy 

Within an FEM framework, the configurations assumed by an elastic structure under a set of nodal 
loads λp = λ [ p1, p2, …, pn ] ’ Ôn, where λ is the load multiplier, are described by a vector of nodal 
displacements q = [ q1, q2, …, qn ] ’ Ôn, which are solutions of the non-linear equilibrium equation set 

 f (λ; q) = K(q) q – λp = 0, (1) 
where K(q) ’ Ôn×n is the secant stiffness matrix of the structure. 
The solutions of equations (1) can be plotted as the points of the equilibrium path of the structure in 
the n+1-dimensional space with co-ordinates t0 = λ, t1 = q1, t2 = q2, …, tn = qn. 
The origin t(0) = [ λ(0); q(0) ] = [ 0; 0 ] always belongs to the path. By convention, the curve passing 
through it is called the primary branch; other curves, if any, are said to be secondary branches. 
Starting from t(0), arc-length methods represent the path as a broken line of chords whose endpoints, 
t(1), t(2), …, t(K), …, correspond to increasing values of the curvilinear abscissa, s(1), s(2), …, s(K), … 
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2.1 The incremental-iterative procedure 

Each incremental step starts from a known point location t(K) = [ λ(K); q(K) ], corresponding to the 
abscissa s(K). The unit tangent vector to the path at the same point, t& (K) = [ λ& (K); q& (K) ], can be 
determined by solving the so-called first order static perturbation problem [1, 2] (here and in the 
following, an upper dot denotes differentiation with respect to the curvilinear abscissa s) 
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where KT(q) = ∂[ K(q)q ]/∂q ’ Ôn×n is the tangent stiffness matrix of the structure. 
At each step, the problem consists of finding the point t = [ λ; q ] = t(K+1) or, alternatively, the secant 
vector, ∆t(K) = [ ∆λ(K); ∆q(K) ] = t – t(K), relative to the subsequent value of the parameter 
s = s(K) + ∆s(K) = s(K+1), where ∆s(K) is the assigned step-length. In the present formulation, the abscissa 
increment is approximated by the length of the secant vector, so the following auxiliary equation, 
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which requires the sought point t to belong to the sphere of radius ∆s(K) and centre at t(K), is added to 
the equilibrium equations (1), yielding the augmented system [3, 4, 5] 
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A predictor-corrector scheme, based on the Newton-Raphson method, is applied to obtain ∆t(K) from 
system (4). The first estimate is given by the linear predictor 

 , (5) )()()0,( KKK s tt &∆=∆

while improved estimates, ∆t(K,1), ∆t(K,2), …, ∆t(K,H), …, are obtained by repeated iterations. At each 
iteration, the corrector δ t(K,H) is determined by solving the following equation set 
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so the updated secant vector becomes ∆t(K,H+1) = ∆t(K,H) + δ t(K,H), while the updated point location is 
determined after the secant vector has been further scaled to fit the spherical constraint (3) 

 )1,()1,()()()1,1( ++++ ∆∆∆+= HKHKKKHK s tttt . (7) 

Iterations are continued until ║δ t(K,H)║ is smaller than a given tolerance, TOL. 

2.2 Solution strategy at regular points 

Systems (2) and (6) are both solved through the diagonalisation of the tangent stiffness matrix, carried 
out by means of the classic Jacobi algorithm. In fact, since KT is a symmetric and real-valued matrix, 
then n mutually orthogonal eigenvectors exist, a1, a2, …, an, such that 

 , (8) niiii ,...,2,1, ==Τ aaK ω

relative to n real eigenvalues, ω1 ≤ ω2 ≤ … ≤ ωn. 
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By virtue of equations (8), and expressing q  and δ q with respect to the eigenvector basis, &
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system (2) can be put in the form (subscripts K and H are here omitted for simplicity) 
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while system (6) becomes 

  (11) 
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At regular points of the path, all eigenvalues are non-zero. Thus, the unit tangent vector can be 
determined by solving first system (10) as follows 
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and then making use of equations (9a) to deduce  (the choice of the sign will be discussed later). q&
Likewise, the corrector can be obtained by solving first system (11) to yield 
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and then making use of equations (9b) to deduce δ q. 

2.3 Critical points 

At simple critical points, one eigenvalue is null, say ωj = 0, while ωi ≠ 0 for i ≠ j. Solution of system 
(10) requires two cases to be considered [6, 7, 8]: 
a) if pTaj ≠ 0 then the point is a limit point: a unique tangent to the path exist and is furnished by 
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while the Newton-Raphson corrector results from 
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and then making use of equations (9b) to deduce δ q. 
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b) if pTaj = 0 then the point is a bifurcation point: for a symmetric bifurcation, two distinct tangents to 
the path are present 
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In this case, system (11) has no solutions at all, so that standard arc-length methods fail. However, 
although this event may appear rather exceptional, as it requires the current iterate to fall exactly on a 
bifurcation point, in practice it is sufficient that iterations are carried out in the neighbourhood of a 
bifurcation point for numerical difficulties to arise. In fact, when the minimum eigenvalue approaches 
zero, the correctors given by (13) become very large in norm. As a consequence, the secant vector 
undergoes sudden changes in both norm and direction, with the risk of erroneous jumps of the 
algorithm onto a bifurcated branch. This possibility can be prevented as explained in the following. 

3 The cone of admissible directions 

3.1 Basic idea and definition 

The basic idea consists of setting an upper limit to the change in angle experienced by the unit tangent 
vector within each incremental step. To this aim, the concept of the osculating circle is suitably 
exploited, in order to fit the proposed strategy within the context of standard arc-length methods. In 
what follows, a brief outline of the algorithm is given. Details can be found in the original paper [9]. 
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Figure 1: The cone of admissible directions 

Figure 1a shows two consecutive points on the path, t(K) and t(K+1), their respective unit tangent vectors, 
t& (K) and t& (K+1), and unit principal normal vectors, n(K) and n(K+1). The above two points are supposed to 
be close enough each other, so that the path segment connecting them can be approximated by a small 
arc of the osculating circle, Γ(K), whose radius is ρ(K). The angle formed by t& (K) and t& (K+1) is twice the 

 5 



 Paolo S. Valvo, Salvatore S. Ligarò  

angle, φ(K), between t& (K) and ∆t(K). Hence, limiting the angle change experienced by  during the 
incremental step K is equivalent to imposing the following inequality constraint 

t&

)(K(

(K

 φφ ≤)(K  (17) 

which defines the cone of admissible directions, within which the secant vector, ∆t(K), must fall. This 
cone has vertex at t(K), axis t& (K) and half-cone angle φ  (Figure 1b). 

3.2 Step reduction 

At the end of iterative cycle H, the angle between ∆t(K,H) and t& (K) is computed from 

 ( ) ),()(),(),(cos HKKHKHK ttt ∆⋅∆= &φ  (18) 

When φ>),( HKφ , the current step-length ∆s(K,H) needs to be reduced to 

 ),(),()1,( sinsin HKHKHK ss ∆=∆ + φφ , (19) 

in order to satisfy the constraint (17); moreover, an updated secant vector is determined as the one 
joining point t(K) to the point where the cone of admissible directions intersects the osculating circle, 

 ),(),()1,(),(
2

),()1,( sin)sin()sinsin HKHKHKHKHKHK s ttt &φφφφφ −∆+∆=∆ ++ . (20) 

3.3 Step increase 

After convergence has been achieved, the half-cone angle φ(K) is a posteriori calculated from 

  (21) )1()()(cos +⋅= KKK tt &&φ

Then, provided that φ<)φ , the step-length for the subsequent incremental step, ∆s(K+1), is increased 
to the maximum value which does not violate the imposed constraint, 

 { }sss KKK ∆∆=∆ + ,sinsinmin )()()1( φφ , (22) 

where s∆  is the initial step-length, assigned at the beginning of the incremental-iterative procedure. 

4 Applications 

4.1 A crank gear model 

In order to illustrate the versatility of the method, a crank gear model was analysed (Figure 2). 
Although seemingly simple, this example represents a severe test for most path-tracing algorithms: in 
fact, due to the possibility of a finite mechanism, the equilibrium path features a whole branch 
characterised by λ = 0 and  = 0 starting from the origin. λ&
Figures 3a and 3b show the equilibrium path in the u1-λ plane and u2-v2 plane, respectively, obtained 
with the following numerical values: s∆  = 50 cm, φ  = 0.10 rad, TOL = 10–6. 
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Figure 2: Crank gear: the model 
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Figure 3: Crank gear: the equilibrium path 

4.2 Two reticulated towers 

Next, the two reticulated towers shown in Figure 4 were analysed. In both cases, the joints of the lower 
hexagon were fixed, while the upper ones were subjected to vertical loads with p = 200 kN. 
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Figure 4: Two reticulated towers 
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The symmetrically-braced reticulated tower (Figure 4a) is kinematically indeterminate [10]. Therefore, 
the origin of the λ-q space turns out to be a bifurcation point and the corresponding secondary branch 
is characterised by λ = 0 and  = 0. This is shown in Figures 5a and 5b, where the equilibrium path in 
the λ-w

λ&

28 plane and u28-w28 plane, respectively, is represented (Joint 28 belongs to the upper hexagon). 
The numerical values s∆  = 50 cm, φ  = 0.10 rad, TOL = 10–6 were again used. 
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Figure 5: Symmetrically-braced reticulated tower: equilibrium path 

 
Figure 6: Symmetrically-braced tower: equilibrium configurations along the primary path 

 
Figure 7: Symmetrically-braced tower: equilibrium configurations along the secondary path 
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Figures 8a and 8b represent the equilibrium path in the λ-w28 plane and u28-w28 plane, respectively, for 
the spirally-braced reticulated tower. In this case, a bifurcation point was detected very close to the 
origin. The corresponding secondary branch is depicted in the figures below. 

-400

-300

-200

-100

0

100

-150 -100 -50 0 50 100

λ

w
28

 [c
m

]

Primary

Secondary

O
B1

L2

L1

 

-200

-150

-100

-50

0

50

-50 0 50 100 150 200

u 28 [cm]

w
28

 [c
m

]

Primary

Secondary
O

B1

 
(b) (a) 

Figure 8: Spirally-braced reticulated tower: equilibrium path 

 
Figure 9: Spirally-braced tower: equilibrium configurations along the primary path 

 
Figure 10: Spirally-braced tower: equilibrium configurations along the secondary path 
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5 Conclusion 

The paper illustrated a revised version of the ‘Admissible Directions Cone’ method, a path-tracing 
strategy, in which the parameter increment is step-wise adapted to the complexity of the curve. The 
inclusion of a new criterion for either reducing or increasing the step-length has improved significantly 
the computational efficiency and effectiveness of the algorithm with respect to previous formulations. 
The method proved its potential in tracing complex equilibrium paths endowed with sharp turning 
points or unexpected bifurcation points. 
As a first test, the non-linear behaviour of a simple crank gear model was analysed. Its primary and 
secondary branches were traced completely. Due to the kinematical indeterminacy of this structural 
system, the primary branch develops entirely under zero applied load. 
Furthermore, two reticulated towers with different bracing schemes were considered. In the case of a 
symmetric bracing, the equilibrium path featured a bifurcation point at the origin and a zero-load 
secondary branch (finite mechanism). Vice versa, in the case of a spiral bracing, a bifurcation point 
was detected very close to the origin. Although the difference in the bracing schemes might appear 
very slight according to linear theory, nevertheless their non-linear post-critical behaviour turned out 
to be totally different. 
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