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DELAMINATION GROWTH IN COMPOSITE PLATES UNDER  
COMPRESSIVE FATIGUE LOADS 

 

S. BENNATI (*), a and P. S. VALVOa 

a Department of Structural Engineering, University of Pisa, Via Diotisalvi 2, I-56126 Pisa, Italy 

ABSTRACT 

A composite laminate containing a delamination is modelled as the union of two sublaminates 

partly bonded together by an elastic interface, in turn, represented by a continuous array of linear 

elastic springs acting in directions normal and tangential to the interface plane. A simple 

mechanical model, already presented by the authors in previous works, allows for determining the 

explicit expressions for the normal and tangential interlaminar stresses exerted between the 

sublaminates at the delamination front, as well as their peak values. It thus enables evaluating the 

individual contributions of modes I and II to the potential energy release rate G, as well as the value 

of the so-called mode-mixity angle. Based on the results obtained, a mode-dependent fatigue 

growth law can then be applied to take into account the simultaneous actions of the two different 

crack propagation modes. Thus, for any load level, predictions can be made on the number of cycles 

needed for a delamination to extend to a given length.  

KEYWORDS: B. Fatigue, Interfacial strength; C. Buckling, Damage mechanics, 

Delamination. 

INTRODUCTION 

Delamination can arise in fibre-reinforced composite laminates as the result of many common 

events, such as manufacturing errors or low-velocity impacts [1, 2, 3]. When a laminated plate 

containing a delamination is loaded under compression, instability phenomena may promote further 

crack growth and, in some cases, lead to failure [4, 5, 6]. In order to model the process, the loss of 
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stability can be studied through the methods of non-linear structural analysis, while delamination 

growth can be described through typical fracture mechanics. 

Previous works by the authors [10, 11, 12] introduced a mechanical model for a delaminated plate 

subjected to monotonic compression. The plate is modelled as the union of two sublaminates, partly 

bonded together by an elastic interface, which is in turn represented by a continuous array of linear 

elastic springs acting in directions normal and tangential to the interface plane [see also 13, 14, 15, 

16]. The model allows for determining the explicit expressions for the normal and tangential 

interlaminar stresses exerted between the sublaminates at the delamination front, as well as their 

peak values. It thus furnishes the individual contributions of modes I and II to the energy release 

rate G, as well as the so-called mode-mixity angle. Then, a mixed-mode growth criterion can be 

applied in order to predict the phenomena of delamination buckling and growth under static 

compressive loads. 

The present paper extends the model outlined in the foregoing to include the case of 

delamination growth under cyclic compressive loads. In such cases, as the delaminated plate 

undergoes repeated buckling and unloading, damage progressively accumulates at the delamination 

front. As a consequence, an existing delamination may grow, even if the static growth criterion is 

not satisfied (i.e., if the energy release rate is less than the critical value). In what follows, a fatigue 

growth law, based on a mode-dependent critical energy release rate, is applied [17]. This enables 

predicting the number of cycles needed for a delamination to grow to a given length. The results 

may prove to be particularly useful, especially they have been obtained through explicit solutions, 

in shedding some light on the mechanisms underlying some very insidious failures and explaining a 

number of experimentally observed phenomena of delamination growth and arrest. 

THE ELASTIC INTERFACE MODEL 

Let us consider a rectangular laminated plate of length 2L, width B, and thickness H, affected by a 

central, through-the-width delamination of length 2a. The laminate is subjected to two compressive 



loads of intensity P acting in the axial direction. The material is assumed to be homogeneous and 

linearly elastic, with orthotropy axes aligned with those of the global reference system OXYZ. 
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Fig. 1: The elastic interface model 

The elastic interface model (Fig. 1) conceives of the delaminated plate as the union of two 

sublaminates, partly bonded by a continuous array of linear elastic springs. The two individual 

sublaminates are referred to as the ‘film’, which is the layer between the delamination plane and the 

nearest external surface (thickness Hf), and the ‘substrate’ (thickness Hs = H – Hf ). The interface 

springs act in both the normal and tangential directions to the interface plane, where they are 

characterized by the elastic constants, kZ and kX, respectively. The width B is assumed to be ‘very 

large’, so the sublaminates can be modelled as beam-plates. Hence, the ‘reduced’ Young modulus 

EX* = EX / (1 – νXZ νZX) is introduced, and all calculations refer to a unit width. According to the 

classical laminated plate theory, Af = EX* Hf and Df = EX* Hf
3 / 12 are the extensional and bending 

stiffness of the film, respectively; As = EX* Hs and Ds = EX* Hs
3 / 12 are those of the substrate, and 

A = EX* H and D = EX* H3 / 12 are those of the base laminate. 

Under these assumptions, the differential equations of the equilibrium problem according to 

von Kármán’s plate theory have been derived and solved completely in closed form. The explicit 

expressions for the solution in the pre- and post-buckling phases are reported in the above-cited 

works [10, 11, 12]. Herein, we limit ourselves to recalling the fundamental results. 



The pre-buckling phase is characterized by a linear relationship between the applied load, P, 

and the end displacement of the plate, u. During this phase, the sublaminates undergo uniform 

shortening, and the axial force is distributed between them in proportion to their extensional 

stiffness. This behaviour ceases when the axial force in the debonded film, Ωf, equals the buckling 

load of the sublaminate. This is determined by numerically solving a non-linear transcendental 

equation, which yields the buckling load of the delaminated plate, PB, i.e., the load applied to the 

base laminate at the incipient buckling of the film. 

During the post-buckling phase, the substrate experiences axial shortening alone, while the 

film undergoes bending as well as shortening. Because of the different displacements of the two 

laminates, non-zero stresses arise in the interface springs. Moreover, the energy release rate, G = –

∂Π/∂a (Π is the total potential energy of the system), which is zero throughout the pre-buckling 

phase, starts to increase. 

G is the sum of the contributions of mode I and II: 

 G = GI + GII (1) 

which are: 
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where λ2 = (A Df) / (Af PB); ω2 = [kX (Af
–1 + As

–1)]–1; and afk is a dimensionless integration constant. 

Finally, the mode-mixity angle, 
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is deduced. By convention, this provides a measure of the relative amount of fracture modes 

through values ranging from 0° (pure mode I) to 90° (pure mode II). 

STATIC DELAMINATION GROWTH 

According to Griffith’s classical criterion, crack growth is to be expected when G equals a critical 

value, GC. In the original and simplest formulation, GC is a material constant, measuring the so-

called ‘toughness’. Nevertheless, for anisotropic materials such as composite laminates, 

experimental determinations of GC are markedly dependent on the propagation mode acting in the 

test performed (I or opening, II or sliding, III or tearing). Actually, the critical value measured in 

pure mode III tests, GIII C, is usually greater than that obtained in pure mode II tests, GII C, which 

may, in turn, be much greater than the value measured in pure mode I tests, GI C. 

Under mixed-mode conditions, as all propagation modes are simultaneously active, the 

toughness equals an intermediate value. Thus, in order to predict crack growth, a mixed-mode 

criterion is to be adopted, by which GC is considered to be a function of the relative amount of the 

different propagation modes. In particular, for plane problems, the critical energy release rate, 

 ( ) ( ) ( )ψγ
ψ

2sin11 −+
= CI

C

G
G  (4) 

where γ = GI C / GII C, may be conveniently defined as a function of the mode-mixity angle [9]. 

For the present model the energy release rate, G, in the post-buckling phase is an increasing 

function of the applied load, P, as shown by equations (1) and (2). Moreover, the mode-mixity 

angle, ψ, increases as either the load or the delamination length grows. For any assigned 

delamination length, it is possible to determine the load, PG(a), at which G = GC(ψ), and static 

delamination growth is expected. Fig. 2 shows the buckling load of the delaminated plate, PB, and 

the static delamination growth load, PG, as functions of the delamination half-length, a. The 

following numerical values have been adopted: L = 100 mm, H = 10 mm and Hf = 1 mm; EX = 54 

GPa and νXZ = 0.25; kX = 17284 N/mm3 and kZ = 23333 N/mm3; GI C = 100 J/m2 and GII C = 1000 



J/m2. The loads have been divided by the Euler load, Peul = π2 D / L2 = 4535.8 N/mm, and the 

delamination half-length has been divided by L. 
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Fig. 2: Buckling load and static delamination growth load vs. delamination half-length 

Two significant values of the delamination half-length have been highlighted in the figure: aB, 

at which PB = Peul, and aC, at which PG reaches a local minimum, PGmin. If the length of the existing 

delamination is such that a < aB, then local buckling phenomena and related delamination growth 

are not to be expected (although global instability can obviously occur); if, on the other hand, aB < a 

< aC, then delamination buckling and growth will be possible, the latter resulting in an unstable 

process; finally, if aC < a, then delamination buckling and growth will be possible, though as a 

stable process. 

For what follows it is useful to introduce an equivalent alternative formulation of the growth 

criterion. To this end, the energy release rate is normalized with respect to the mode-dependent 

toughness: 

 ( )ψCG

G
G =ˆ  (5) 

Consequently, under static loading, the condition for delamination growth becomes 
Ĝ

 = 1, 

while no growth is instead predicted for 
Ĝ

 < 1. With reference to Fig. 2, the static growth condition 

is fulfilled by points belonging to the ‘growth curve’, P = PG. On the other hand, points located 



below or on the ‘buckling curve’, P = PB, furnish 
Ĝ

 = 0. Lastly, for all points in the region between 

the above two curves, 0 < 
Ĝ

 < 1, no static growth is expected. However, delamination growth under 

cyclic loads is possible, as explained in the next paragraph. Finally, we should also note that 
Ĝ

 turns 

out to be greater than 1 for all points located above the growth curve. This means that these points 

are not reachable via a quasi-static load history. Therefore, they have no meaning within the present 

model, which does not account for any dynamic effects. 

FATIGUE DELAMINATION GROWTH 

Moving on to examine the case of fatigue delamination growth, let us consider a laminated plate 

affected by a delamination whose initial half-length is a0. We assume that the applied compressive 

load varies cyclically between Pmin and Pmax, so that the energy release rate will vary between Gmin 

and Gmax. In these cases, experimental studies show that delamination growth can occur because of 

the progressive accumulation of damage at the delamination front as the delaminated plate 

undergoes repeated buckling and unloading. 

According to [17], a fatigue growth law can be postulated, 
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where N is the number of load cycles performed, and 

 ( )ψCG

GG
G minmaxˆ −=∆  (7) 

is the range of the normalized energy release rate. In turn, c(ψ) and m(ψ) are two mode-dependent 

parameters to be determined by experiment. In particular, the multiplicative factor is  

 ( ) ( ) ( )[ ]ψκψ 2sin11 −+= Icc
 (8) 

where κ = cII / cI; cI and cII are the values measured in pure mode I and II tests, respectively. 

Analogously, mode dependence is introduced for the exponent, by setting 



 ( ) ( ) ( )[ ]ψµψ 2sin11 −+= Imm
 (9) 

where µ = mII / mI; mI and mII are the values measured in pure mode I and II tests, respectively. The 

numerical values used for all subsequent figures are: cI = 50 mm/cycle and κ = 10; mI = 10 and µ = 

0.50. 

In what follows we will assume that cycles are performed with Gmin = 0, so that ∆
Ĝ

 = 
Ĝ

max, 

and the fatigue growth rate (6) becomes: 
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This assumption, however, does not necessarily imply Pmin = 0, but just that Pmin ≤ PB, since 

G = 0 in the pre-buckling phase. 

The fatigue growth rate, da/dN, is a positive increasing function of 
Ĝ

max. Moreover, because 

of the denominator of equation (10), as 
Ĝ

max approaches unity, the growth rate goes to infinity, so 

that instant (static) growth is predicted. Also, da/dN is an increasing function of ψ (Fig. 3). 

Therefore, since the mode-mixity angle increases as the delamination grows longer [12], the growth 

rate is expected to become higher and higher as the process of fatigue growth itself develops. Fig. 4 

represents da/dN as a function of the delamination half-length, a, at constant maximum load. The 

dashed curve is for Pmax = PGmin: for this and all higher load values, da/dN features a vertical 

asymptote. Instead, for Pmax < PGmin, the curves present a local maximum. 
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Fig. 3: Fatigue growth rate vs. mode-mixity angle 
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Fig. 4: Fatigue growth rate vs. delamination half-length 

The number of cycles needed for the delamination to grow from its initial length, 2a0, to a 

current length, 2a, is given by: 
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Because of the analytical complexity of equation (11), the integration must be carried out 

numerically. In the following, two cases are considered separately. 

When the maximum load, Pmax, is less than the minimum load at which static growth can 

occur, PGmin = PG(aC), then the straight line, P = Pmax, intersects the buckling curve, P = PB, at one 



point where the delamination half-length, aF, is such that PB(aF) = Pmax (Fig. 5). If the initial 

delamination length is such that a0 ≤ aF, then no fatigue growth is expected, since no local buckling 

will take place; instead, if a0 > aF, then fatigue growth is predicted. Moreover, fatigue growth will 

be ‘undefined’, since in theory it can continue until the plate is completely delaminated. 
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Fig. 5: Fatigue delamination growth (Pmax ≤ PGmin) 

Instead, when the maximum load, Pmax, is greater than the minimum static growth load, PGmin, 

then the straight line, P = Pmax, intersects the buckling curve, P = PB, at aF. It also intersects the 

growth curve, P = PG, at two points where the delamination half-length is, respectively, aG1 and aG2 

(Fig. 6). As in the previous case, if the initial delamination length is such that a0 ≤ aF, then no 

fatigue growth is expected since no buckling will occur. Likewise, if a0 > aG2, then ‘undefined’ 

fatigue growth will take place. A different behaviour emerges in the range of aF < a0 < aG1: here, 

fatigue growth is possible, but after a finite number of cycles have completed, at a = aG1, the 

conditions for static growth are fulfilled and the process can possibly continue in the form of static 

growth until a = aG2. 
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Fig. 6: Fatigue delamination growth (Pmax > PGmin) 

The following three figures show the delamination half-length as a function of the number of 

load cycles. A dashed line marks the value, aF, for which no fatigue growth occurs. Depending 

upon the maximum load level, the qualitative trend of the fatigue growth process changes 

considerably. In Fig. 7, the load level is quite low (Pmax/Peul = 0.10), and the delamination does not 

increase appreciably in length until more than 104 cycles have been performed. In Fig. 8, the 

maximum load (Pmax/Peul = 0.20) is very close to the minimum static growth load (PGmin/Peul = 

0.2084): here, rapid fatigue growth takes place, leading to complete delamination in a number of 

load cycles of less than 102. Finally, in Fig. 9, the maximum load is Pmax > PGmin. Here, for a0 > aG2, 

very rapid fatigue growth is expected, leading to complete delamination in less than 10 cycles. The 

curve for a0 = 0.20 predicts peculiar behaviour, by which the delamination begins to grow very 

slowly, then, at a = aG2, it suddenly makes a ‘jump’ leading to complete delamination. Such 

behaviour clearly represents a very insidious and dangerous failure mode. 
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Fig. 7: Delamination half-length vs. number of load cycles at Pmax = 0.10 Peul 
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Fig. 8: Delamination half-length vs. number of load cycles at Pmax = 0.20 Peul 
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Fig. 9: Delamination half-length vs. number of load cycles at Pmax = 0.25 Peul 
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Fig. 10: Delamination half-length vs. number of load cycles: theoretical predictions and experimental results 

As a last example, Fig. 10 shows a comparison between the theoretical predictions of the 

present model (continuous lines) and some experimental results (single points) reported in [17]. The 

experiments concerned the three graphite-epoxy specimens described in Table 1: specimen 10/36 

was a 36-ply laminate having a delamination between the tenth and eleventh plies; specimens 6/30 

and 4/30 were 30-ply laminates containing delaminations, respectively, between the sixth and 

seventh and between the fourth and fifth plies. 



Table 1: Specimen data (from [17]). 

Delamination half-length Maximum strain/load 
Specimen Thickness 

H [mm] a0 [mm] a0 / L εmax 
Pmax = Aεmax 

[N/mm] 
Pmax/Peul 

10/36 (□) 2.87 33.02 0.650 1.003 x 10–3 456.2 0.350 

6/30 (∆) 2.75 26.15 0.515 1.325 x 10–3 552.4 0.550 

4/30 (○) 2.75 21.25 0.418 1.575 x 10–3 685.3 0.600 

 

Moreover, the following values drawn from the cited paper were used: L = 50.8 mm, EX* = 

151.6 GPa, GI C = 190 J/m2, γ = GI C / GII C = 0.30; finally, the fatigue growth law parameters were 

assumed to be cI = 0.0435 mm/cycle, κ = 10.1, mI = 10.385 and µ = 0.501. 

Only the 6/30 specimen yields a good fit between theory and experiments; conversely, 

theoretical predictions for the 10/36 and 4/30 specimens appear, respectively, to overestimate and 

underestimate the actual fatigue lifetime. Further studies are needed to determine the reasons for 

such discrepancies.  

CONCLUSION 

Knowing the explicit expressions for the normal and tangential interlaminar stresses and their peak 

values at the delamination front produced by compression cycles able to trigger local instability 

mechanisms allows for direct calculations of the intensity oscillations of the crack driving forces 

and. Once the fatigue delamination growth criterion has been chosen, this enables following the 

history of the spread of the delaminated region. Growth by fatigue is in fact a complex 

phenomenon: one needs only consider how the so-called mixity angle gradually changes during the 

growth of the delamination and, with it, the relative contributions of mode I and II involved in the 

extension process. In this perspective, the possibility of direct calculations offered by the very 

simple mechanical model could prove to be a precious aid in explaining the reasons why small 

changes in the governing parameters (such as the initial delamination length, the intensity of the 

maximum load, significant mechanical parameters of the composite laminate, etc.) can lead to 



completely different pathways of delamination growth. Further work is planned to verify this 

hypothesis by an accurate comparison with the experimental data available in the literature, as well 

as by carrying out expressly designed specific experimental tests. 
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