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SUMMARY. The paper presents a mechanical model of the single-lap joint (SLJ) test, where the 
adherends are considered as shear-deformable elastic laminated beams, partly connected by an 
elastic-brittle interface. The problem is described by a set of six coupled differential equations, 
which has been analytically solved, thus obtaining explicit expressions for the internal forces, 
interfacial stresses, energy release rate, and mode mixity angle. 

1 INTRODUCTION 

Adhesive joints are currently used to bond structural elements made of composite or traditional 
(metallic) materials [1]. Depending on the geometry and mechanical properties of adherends and 
adhesive, the ultimate load-carrying capacity of an adhesive joint is limited by several, interacting 
failure modes. These include, for instance, rupture of the adherends, failure in shear or peeling of 
the adhesive, and delamination of the adherends (when made of composite laminates). 

Because of the relevance of the problem, many experimental test methods have been developed 
to evaluate the effectiveness of adhesive joints. The simplest test is probably the single-lap joint 
(SLJ) test [2, 3], used to assess the shear strength of adhesive joints. Actually, in the case of 
balanced joints (i.e. when the two adherends are identical in geometry and material), provided that 
the adherends are very rigid compared to the adhesive, failure occurs by the cracking of the 
adhesive layer under prevailing mode II fracture conditions. In general, however, mixed-mode 
fracture conditions apply [4]. Simple analytical models of the SLJ test were developed in the 
pioneering works of Volkersen [5] and Goland and Reissner [6]. A detailed literature survey on 
this topic has been recently given by da Silva et al. [7]. 

The present paper is intended as a further contribution to the study of adhesive joints in 
composite structures. Following a modelling approach similar to that developed elsewhere for the 
analysis of delamination [8], we have adopted a mechanical model of the single-lap joint test in 
which two structural elements, generally different the one from the other for thickness and 
material, are bonded by a single adhesive layer. The model considers the adherends as elastic 
laminated beams, partly connected by a deformable interface, here representing the adhesive layer. 
The shear deformability of the beams, which may be relevant for composite laminates, is 
considered according to Timoshenko’s theory. The interface is considered as a continuous 
distribution of normal and tangential elastic-brittle springs, whose failure is governed by a mixed-
mode crack-growth criterion. 

A set of six coupled differential equations describes the problem. By adopting the interfacial 
stresses as principal unknowns, the original equation set is changed into two uncoupled higher-
order differential equations. These equations are solved analytically and explicit expressions for 
the interfacial stresses and internal forces in the bonded elements are deduced. Finally, the energy 
release rate and mode-mixity angle at the ends of the adhesively bonded region are determined. 

A numerical example is presented and a very first comparison with similar models available in 
the literature is carried out. 
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2 FORMULATION OF THE PROBLEM 

2.1 Mechanical model 

A scheme of the single-lap joint test is shown in Fig. 1. The specimen is composed of two 
adherends of width B (not shown in the figure) and thicknesses H1 = 2 h1 and H2 = 2 h2, generally 
made of different materials, bonded by an adhesive layer of thickness t over a portion of length b. 
During the test, the specimen is loaded in tension by two opposite forces of magnitude P. 

  
 Figure 1: Scheme of the single-lap joint test. 

 

  
 Figure 2: Mechanical model of the SLJ test. 
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In the mechanical model (Fig. 2a), the adherends behave as elastic laminated beams according 
to Timoshenko’s theory. We denote with Aα, Cα and Dα their extensional, shear and bending 
stiffnesses, respectively (here, and in the following, α = 1, 2 refer to the two adherends), computed 
as indicated by classical laminated plate theory [9]. The adhesive layer is represented by a 
deformable interface, consisting of a continuous distribution of elastic-brittle springs (Fig. 2b), 
with elastic constants kz and kx, respectively acting along the normal and tangential directions with 
respect to the interface plane. Rupture of the springs is governed by a mixed-mode crack-growth 
criterion in terms of the energy release rate. The generic cross section along the adhesively bonded 
region is specified by the abscissa s. Two local reference systems, O1x1z1 and O2x2z2, are defined 
with the origins on the centrelines of the adherends. Accordingly, we indicate with uα and wα the 
mid-plane displacements of the adherends along the axial and transverse directions, respectively, 
and with φα the rotations of their cross sections, positive if counter-clockwise (Fig. 2b). 

2.2 Differential problem 

The equilibrium equations for the adherends in the bonded portion ( [0, ]s b∈ ) are 

 0, 0, 0,
dN dQ dM

n q m Q
ds ds ds

α α α
α α α α+ = + = + − =  (1) 

where Nα, Qα, and Mα are respectively the axial force, shear force, and bending moment, and 

 1 2 1 2, ,n n B q q B m B hα ατ σ τ= − = = − = =  (2) 

are the corresponding distributed loads and couples, and 

 z x, ,k w k uσ τ= ∆ = ∆  (3) 

are the normal and tangential interfacial stresses. These are proportional to the axial and transverse 
relative displacements at the interface, 2 1u u u− +∆ = −  and 2 1w w w− +∆ = − , where 1u+  and 1w+  are the 

displacements at the bottom surface (z1 = h1) of adherend 1 and 2u−  and 2w−  are the displacements 

at the top surface (z2 = –h2) of adherend 2. The axial displacements of the adherends vary linearly 
with the thickness coordinate, so that 1 1 1 1u u hφ+ = +  and 2 2 2 2u u hφ− = − , while the transverse 

displacements are assumed constant throughout the thickness, so that 1 1w w+ =  and 2 2w w− = . Thus, 

 2 1 2 2 1 1 2 1,u u u h h w w wφ φ∆ = − − − ∆ = − . (4) 

The constitutive laws for the adherends can be written as 

 , , ,N B Q B M Bα α α α α α α α αε γ κ= = =A C D  (5) 

where 

 , , ,
du dw d

ds ds ds
α α α

α α α α
φε γ φ κ= = + =  (6) 

are respectively the axial strain, shear strain, and curvature of the adherends. 
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By substituting Eqs. (2), (5), and (6) into (1), we get the set of governing differential equations, 

 

2 2 3
1 1 1 1

12 2 3
1 1 1

2 2 3
2 2 2 2

22 2 3
2 2 2

1
, , ( ),

1
, , ( ),

d u d w d d d
h

ds dsds ds ds

d u d w d d d
h

ds dsds ds ds

φ φτ σ τσ

φ φτ σ τσ

= − + = − = − +

= + = = −

A C D

A C D

 (7) 

where the interfacial stresses, σ and τ, are given by Eqs. (3) and (4). The differential problem is 
completed by the boundary conditions 

 1 1 1 2 1 1 10 0 0

2 2 2 2 2 2 10 0 0

, 0, ; 0, 0, 0;

0, 0, 0; , 0, ;
s s s s b s b s b

s s s s b s b s b

N P Q M Ph N Q M

N Q M N P Q M Ph
= = = = = =

= = = = = =

= = = = = =
= = = = = = −

 (8) 

which can be expressed in terms of the displacements, uα ,wα and φα, by using Eqs. (5) and (6). 

3 SOLUTION STRATEGY 

3.1 Change of variables 

Following a solution strategy similar to that of Ref. [8], we introduce a change of variables that 
simplifies strongly the analytical solution of the problem. Namely, we adopt the interfacial stresses 
as the main unknowns. To this aim, we substitute Eqs. (4) into (3) and then differentiate the 
resulting expressions for σ and τ with respect to s four and three times, respectively. Thus, we 
obtain a sixth-order linear homogeneous differential equation for the normal interfacial stress, 

 
6 4 2

6 4 2
ˆ ˆˆ 0

d d d
b c d

ds ds ds

σ σ σ σ+ + + = , (9) 

where the constant coefficients are 

 

2 2
x 1 2 1 1 2 2 z 1 2

2 2
x z 1 2 1 1 2 2 1 2 z 1 2

2
x z 1 2 1 2 1 2 1 2

ˆ ( ) ( ),

ˆ ( ) ( ) ( ),

ˆ [( )( ) ( ) ],

b k h h k

c k k h h k

d k k h h

= − + + + − +

= + + + + + +

= − + + + +

a a d d c c

a a d d c c d d

a a d d d d

 (10) 

and 1/α α=a A , 1/α α=c C , and 1/α α=d D  denote the extensional, shear and bending 

compliances of the adherends, respectively. 
The tangential interfacial stress can then be obtained by integrating the following equation 

 
4 2

1 2 1 24 2
1 1 2 2 z

1 1
[ ( ) ( ) ]

d d d

ds h h k ds ds

τ σ σ σ= − − + + +
−

c c d d
d d

. (11) 
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3.2 Interfacial stresses 

The general solution to Eq. (9) can be written as 

 
6

1

( ) exp( )i i
i

s F sσ λ
=

=∑ , (12) 

where F1, F2, …, F6 are integration constants to be determined by imposing the boundary 
conditions, and λ1, λ2, …, λ6 are the roots of the characteristic equation, 

 6 4 2ˆ ˆˆ 0b c dλ λ λ+ + + = . (13) 

By substituting Eq. (12) into (11) and integrating, we obtain the general solution for the 
tangential stress, 

 
36

1 2 1 2 7
11 1 2 2 z

1 1
( ) [ ( ) ( ) ]exp( )i

i i i
i i

s F s F
h h k

λτ λ λ
λ=

  = − − + + + + −   
∑ c c d d

d d
, (14) 

where F7 is another constant. 

3.3 Integration constants 

The internal forces can now be deduced by substituting the expressions for the interfacial 
stresses (12) and (14) into Eqs. (2) and (1), and integrating the latter with respect to s. This process 
yields the analytical expressions for the internal forces, where six new integration constants, F8, F9, 
…, F13, appear. In turn, the expressions for the internal forces are substituted into the constitutive 
laws (5). Then, by using Eqs. (6) and integrating with respect to s, the analytical expressions for 
the displacements are also deduced. These involve six more constants, F14, F15, …, F19. 

To sum up, there are 19 integration constants to be determined, but the boundary conditions (8) 
appear insufficient because they consist of only 12 equations. Actually, by introducing the 
obtained expressions for the interfacial stresses and displacements into Eqs. (3), we find 7 
relations between the constants, only 12 of which turn out to be independent of each other. So, by 
imposing boundary conditions (8), we find the values of all the integration constants, except for 
F14, F16, and F18, which represent a rigid displacement of the whole system. 
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In particular, the first six constants are obtained by solving a linear equation set, 

 

26

1 2 1 2
1 z
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k
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f
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λ
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λ
λ

λ

=
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=

=
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+ − − + +
= −
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=

+
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∑

∑

∑

∑

∑

∑

c c d

a d a d a d d d

a a d d d d
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a d a 2
1 1 2 2 1 2 1 2 1 1 2
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1 2 1 2 1 2 1 2

) ( ) ( )
,

( )( ) ( )

h h h h h h

h h

+ − + +
+ + + +
d a d d d

a a d d d d

 (15) 

where / , 1, 2, , 6i if F B P i= = … . 

3.4 Internal forces 

Based on the above results, we deduce the expressions for the internal forces in the adherends: 

 

26
1 2

1 2 2
1 z2 1 2 1 2 1 1 2

1 2
1 1 2 21 2 1 2 1 2 1 2

2 1

( )exp( )
( ) ( )

( ) ,
( )( ) ( )

( ) ( ),

i
i i

i i

f s
kh h h

N s P P
h hh h

N s P N s

λ λ
λ=

+− − +
+ + +

= +
−+ + + +

= −

∑
d d

c c
a d d d d

d da a d d d d
 (16) 

for the axial forces; 

 
6

1 2 1
1

( ) exp( ), ( ) ( ),i
i

i i

f
Q s P s Q s Q sλ

λ=

= − = −∑  (17) 

for the shear forces; and lastly, 

26
2 1 2

1 2 1 2
1 z1 1 2 2 2

1 2
1 1 2 21 2 1 2 1 2 1 2

2 1 1 2 2 1

( )
[( ) ]exp( )

( )
( ) ,

( )( ) ( )

( ) ( ) ( ) ( ) ,

i
i i

i i

h h
f h s

kh h
M s P P

h hh h

M s M s N s h N s h

λ λ
λ=

+− − +
−

= − +
−+ + + +

= − + −

∑
d

c c
a a d

d da a d d d d
(18) 

for the bending moments. Likewise, explicit expressions for the displacements can be obtained. 
For simplicity, we omit here those results, which will be presented in an extended paper. 
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3.5 Energy release rate, crack-tip interfacial stresses, and mode mixity 

Failure of a real adhesive joint can occur as a consequence of several different failure modes. 
Here, we focus on the failure due to the cracking of the adhesive layer. In this case, crack growth 
can initiate at either of the two sections, A and B, at the ends of the bonded region, where the 
interfacial stresses attain peak values, 

 

6 6

0
1 1

2 26 6

1 2 1 2
1 1z z

0
1 1 2 2 1 1 2 2

, exp( ),

( ) ( )exp( )

, .

A i B i is s b
i i

i i
i i i i i

i i
A Bs s b

P P
f f b

B B

f f b
k kP P

B h h B h h

σ σ σ σ λ

λ λλ λ λ
τ τ τ τ

= =
= =

= =
= =

= = = =

+ − + −
= = = =

− −

∑ ∑

∑ ∑c c c c

d d d d

 (19) 

Accordingly, the energy release rates at the two potential crack tips are 

 ,I ,II ,I ,IIandA A A B B BG G G G G G= + = + , (20) 

where 

 
2 2 2 2

,I ,II ,I ,II
z x z x

, and , ,
2 2 2 2

A A B B
A A B BG G G G

k k k k

σ τ σ τ
= = = =  (21) 

are the respective contributions of modes I and II to the energy release rate. Finally, we obtain the 
mode-mixity angles at the two endpoints, 

 ,II ,II

,I ,I

arctan and arctanA B
A B

A B

G G

G G
ψ ψ= = , (22) 

from which the critical values of the energy release rate, 

 ,c c ,c c( ) and ( )A A B BG G G Gψ ψ= = , (23) 

can be computed according to some chosen mixed-mode crack-growth criterion [4], suitable for 
the adhesive under examination. 

4 NUMERICAL EXAMPLE 

By way of illustration, we apply the proposed model to the case of a balanced (symmetric) SLJ 
already considered for comparison purposes by das Neves et al. [10]. The adherends have width 
B = 25 mm and thickness H1 = H2 = 2 mm. The adhesive layer has length b = 50 mm and thickness 
t = 1 mm. The elastic moduli of the adherends (here assumed isotropic) are E1 = E2 = 106.3 GPa, 
G1 = G2 = 40.0 GPa, the moduli of the adhesive are Ea = 4.44 GPa and Ga = 1.64 GPa. Hence, the 
stiffnesses of the adherends turn out to be the following: A1 = E1 H1 = 212600 N/mm (= A2), 
C1 = 5 G1 H1 / 6 = 66604 N/mm (= C2), D1 = E1 H1

3 / 12 = 70867 N mm (= D2). 
As far as the elastic constants of the interface are concerned, similar models available in the 

literature consider these constants to be functions of the elastic moduli of the adhesive. Here, in 
order to account also for the localised deformation occurring at the crack-tip, which may be 
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particularly relevant for composite, orthotropic materials, we set 

 
3 3

1 2 1 2

a a1 2 1 2

1 N 1 N
1519.4 and 4097.7

mm mmx zk k
h h h ht t

= = = =
+ + + +

G EG G E E

. (24) 

Fig. 3 shows the internal forces in the upper (continuous, red curves) and lower (dashed, blue 
curves) adherends as functions of the abscissa, s, as given by Eqs. (16)–(18) for an applied load 
P = 5 kN. In particular, Fig. 3a shows the axial forces, N1 and N2, Fig. 3b represents the shear 
forces, Q1 and Q2, and Fig. 3c shows the bending moments, M1 and M2. In this case, the symmetry 
of the specimen is reflected into the symmetry of the plots of the internal forces. 

[kN]

N1

N2

s [mm]

[kN]

Q2

Q1

s [mm]
 

 a) b) 

[Nm]

M1

M2

s [mm]  
 c) 
 Figure 3: Internal forces in the adherends. 

Fig. 4 shows the normal and tangential interfacial stresses, σ and τ, as given by Eqs. (12) and 
(14), respectively, as functions of the abscissa, s. Both stress components attain peak values at the 
ends of the adhesively bonded region. The peak stress values obtained by the present model are 
compared in Table 1 with the corresponding values predicted by the models of Refs. [10] and [11]. 
A very good agreement is found for the peak tangential stress, while higher discrepancies emerge 
for the normal stress. 
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σ
[MPa]

s [mm]

σA σB

τ
[MPa]

s [mm]

τA τB

 
 Figure 4: Normal and tangential interfacial stresses. 

Table 1: Peak values of the interfacial stresses [MPa]. 

Stress component Present model, Eqs. (19) das Neves et al. [10] Frostig et al. [11] 

σA = σB 34.0 15.0 40.0 

τA = τB 23.9 24.0 23.0 

 
Correspondingly, we compute the mode I and II contributions to the energy release rate, 

 ,I ,I ,II ,II2 2

J J
141.1 and 188.2

m mA B A BG G G G= = = = , (25) 

and the mode-mixity angle, 

 49.1A Bψ ψ= = ° , (26) 

which show, at least in this case, that the contribution from mode I fracture is not negligible at all. 
Lastly, as a first step towards the analysis of unbalanced SLJ specimens, in Fig. 5 we show the 

effect on the axial force N1 of varying the ratio η = H1/H2, while keeping constant the overall 
thickness, H1 + H2. 

N1

[kN]

η = 1

s [mm]

η = 2

η = 10

η = 1/2

η = 1/10

 
 Figure 5: Axial force in the upper adherend for unbalanced (asymmetric) SLJ specimens. 
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5 CONCLUSIONS 

We have presented a mechanical model of the single-lap joint (SLJ) test, suitable for balanced 
and unbalanced joints. The model considers the adherends as shear-deformable elastic laminated 
beams, partly connected by an elastic-brittle interface. 

A complete explicit solution of the problem has been obtained for the internal forces and 
interfacial stresses. Hence, explicit expression for the energy release rate and mode mixity angle 
have also been deduced. The solution enables investigating the role of the relevant mechanical 
parameters, such as the dimensions of the specimen, the thicknesses and mechanical properties of 
the adherends and adhesive. 

From the first carried out comparisons, a good agreement has been found between the 
theoretical predictions of our model and similar ones proposed in the literature. However, further 
work is necessary to allow the model to take into account some important aspects of the behaviour 
of real adhesive joints such as, for instance, the viscous and elastic-plastic behaviour of the 
adhesive, the geometrical non-linearity, due to large displacements, and the interaction of several 
failure modes. It is likely that the above improvements will require the use of numerical solution 
methods, for which the developed analytical solution will hopefully serve as a reliable basis. 
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