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ABSTRACT 

The paper analyses the problem of an interfacial crack propagating between two elastic 
layers, generally different the one from the other for thickness and material. The layers are 
modelled as shear-deformable laminated beams of finite length, connected one another by 
an interface of negligible thickness, and subjected to general loads at their ends. The 
problem is formulated through a set of six differential equations. In the simplest case of a 
linearly elastic interface, the problem is analytically solved by adopting the interfacial 
stresses as principal unknowns. Thus, explicit expressions for the interfacial stresses, 
internal forces, displacements, energy release rate, and mode mixity angle are determined. 
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INTRODUCTION 

Interfacial fracture is a major failure mode for a wide class of layered structures [1]. 
Examples include the delamination of composite laminates [2], the decohesion of thin films 
from substrates, the cracking of the adhesive in adhesively bonded joints [3]. Within the 
framework of fracture mechanics, crack-growth criteria can be formulated in terms of the 
energy release rate, G. However, since interfacial fracture usually occurs under mixed-mode 
conditions, it is also necessary to determine the contributions, GI and GII, respectively related 
to fracture modes I (opening) and II (sliding) [4]. In order to model in detail the exchange of 
stresses between the separating layers, an interface layer can be explicitly introduced in the 
mechanical model. Depending on the adopted interfacial constitutive law, various effects 
such as anisotropy, plasticity, viscosity, damage and so on can be taken into account [5]. 

This paper analyses the problem of an interfacial crack propagating between two elastic 
layers, generally different the one from the other for thickness and material. By extending a 
modelling approach already adopted for the study of composite delamination [6, 7], the two 
layers are modelled as shear-deformable laminated beams of finite length, connected one 
another by an interface of negligible thickness, and subjected to general loads at their ends. 
The problem is formulated through a set of six differential equations, along with suitable 
boundary conditions. In the simplest case of a linearly elastic interface, the governing 
differential equations are uncoupled and analytically solved by adopting the interfacial 
stresses as principal unknowns. Thus, explicit expressions for the interfacial stresses, 
internal forces, displacements, energy release rate, and mode mixity angle are determined. 

The obtained solution can be used to deal with a wide gamut of interfacial fracture problems, 
ranging from laboratory test specimens to real structural components. 
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LAYERED STRUCTURE MODELLING 

Mechanical model 

Consider a layered structural element AB of length L, thickness H, and width W, obtained by 
connecting two layers of thicknesses H1 and H2 through an interface of thickness t << H 
(Fig. 1). An interfacial crack of length a runs from the end section A to an intermediate 
section O, so that the length of the unbroken part, from section O to B, is = −b L a . 

 

Fig. 1: Layered structural element 

 

Fig. 2: Mechanical model 

A mechanical model of the abovementioned element can be developed by supposing the two 
connected layers behave as elastic, shear-deformable laminated beams. Since the parts 
between sections A and O can be studied as cantilever beams, in the model it will suffice to 
consider the segment OB of the layered element (Fig. 2). An abscissa s is introduced to 
specify the position of the beams’ cross sections. Two local reference systems, O1x1z1 and 
O2x2z2, are defined with the origins placed on the centrelines of the upper and lower beams, 
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respectively. Accordingly, uα and wα are the beams’ mid-plane displacements along the axial 
and transverse directions, respectively, and φα are the cross-section rotations, positive if 
counter-clockwise (here and in the following the upper and lower beams are identified by 
subscripts α = 1, 2, respectively). Moreover, let h = H / 2, h1 = H1 / 2, and h2 = H2 / 2. 

According to Timoshenko’s beam theory, 

 α α α
α α α α

φε γ φ κ= = =+
du dw d

s s s s
ds ds ds

, ,( ) ( ) ( ) ( )  (1) 

respectively are the axial strain, shear strain, and curvature. Correspondingly, 

 , ,( ) ( ) ( ) ( ) ( ) ( )W A W C W DN s s Q s s M s sα α α α α α α α αε κγ= = =  (2) 

respectively are the axial force, shear force, and bending moment, and Aα, Cα and Dα 
respectively denote the beams’ extension, shear and bending stiffnesses (per unit width) [8]. 
Also, it is convenient to define the beams’ extension, shear, and bending compliances, 

 α α α
α α α

= = =a c d
A DC

, ,
1 1 1

.  (3) 

Differential problem 

The equilibrium equations for the connected beams are 

 0, 0, 0,
dN dQ dM

n q m Q
ds ds ds

α α α
α α α α+ = + = + − =  (4) 

where 

 1 2 1 2, ,n n W q q W m W hα ατ σ τ= − = = − = =  (5) 

are distributed loads and couples, and σ and τ respectively are the normal and tangential 
stresses exchanged through the interface. By substituting equations (1–3) and (5) into (4), 
the set of governing differential equations for the problem is obtained, 

 

2 2 3
1 1 1 1

1 1 1 12 2 3

2 2 3
2 2 2 2

2 2 2 22 2 3

, , ( ),

, , ( ),

d u d w d d d
a c d h

ds dsds ds ds
d u d w d d d

a c d h
ds dsds ds ds

φ φ ττ σ σ

φ φ ττ σ σ

= − + = − = − +

= + = = −
 (6) 

where the interfacial stresses, 

 ( , ), ( , ),u w u wσ σ τ τ= ∆ ∆ = ∆ ∆  (7) 

are functions of the axial and transverse relative displacements at the interface, 

 2 1 2 2 1 1 2 1, .u u u h h w w wφ φ∆ = − − − ∆ = −  (8) 

The layered element OB is supposed to be in equilibrium under a given system of in-plane 
concentrated loads, acting at the ends of the upper and lower beams. 
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Consequently, the following boundary conditions apply: 

 
1 1 1 1 1 1 1 1 1 1 1 10 0 0

2 2 2 2 2 2 2 2 2 2 2 20 0 0

, , ; , , ;

, , ; , , ;

O O O B B B

s s s s b s b s b

O O O B B B

s s s s b s b s b

N N Q Q M M N N Q Q M M

N N Q Q M M N N Q Q M M
= = = = = =

= = = = = =

= = = = = =

= = = = = =
 (9) 

where, because of global equilibrium, 

 2 1 2 1 2 1 2 1

2 1 2 1 1 2 1 1

, ,

( ) ( ) .

B O O B B O O B

B O O B O O B O

N N N N Q Q Q Q

M M M M Q Q b N N h

= + − = + −

= + − + + + −
 (10) 

SOLUTION STRATEGY 

Change of variables 

In many applications, the interface can be thought of as a continuous distribution of elastic-
brittle springs. In the linearly elastic behaviour range, the interfacial stresses are 

 , ,z xk w k uσ τ= ∆ = ∆  (11) 

where kz and kx are the interface’s elastic constants. Following a solution strategy already 
adopted for the study of composite delamination [7], the interfacial stresses are conveniently 
assumed as main unknowns. Equations (8) are substituted into (11), which are then 
differentiated with respect to s four and three times, respectively. Next, from equations (6) 
the following differential equation set is obtained: 

 

4 2

1 2 1 2 1 1 2 24 2

3
2 2

1 2 1 1 2 2 1 1 2 23

( ) ( ) ( ) 0,

( ) ( ) 0.

z z z

x x

d d d
k c c k d d k d h d h

dsds ds
d d

k a a d h d h k d h d h
dsds

σ σ τσ

τ τ σ

− + + + + − =

− + + + − − =
 (11) 

Two cases have to be considered in solving the problem: 
a) 1 1 2 2d h d h= , the ‘balanced’ case, including the case of identical connected beams; 

b) 1 1 2 2d h d h≠ , the ‘unbalanced’ or general case. 

In the balanced case, equations (11) are uncoupled and can be solved separately to obtain 
the normal and tangential stresses. Details, here omitted for brevity, are postponed to an 
extended paper. In the general case, uncoupling of equations (11) is obtained by solving the 
first equation for d dsτ  and substituting the result into the second equation. A sixth-order, 
linear homogeneous differential equation for the normal interfacial stress is obtained, 

 
6 4 2

6 4 2
ˆ ˆˆ 0

d d d
b c d

ds ds ds
σ σ σ σ+ + + = , (12) 

where 

 

2 2
1 2 1 1 2 2 1 2

2 2
1 2 1 1 2 2 1 2 1 2

2
1 2 1 2 1 2 1 2

ˆ ( ) ( ),

ˆ ( )( ) ( ),

ˆ [( )( ) ( ) ].

x z

x z z

x z

b k a a d h d h k c c

c k k a a d h d h c c k d d

d k k a a d d d d h h

= − + + + − +

= + + + + + +

= − + + + +

 (13) 
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Interfacial stresses 

By solving equation (12), and substituting the result into equations (11), the general solution 
for the normal and tangential interfacial stresses is obtained, 

 

6

1

36

1 2 1 2 7
11 1 2 2

( ) exp( ),

1 1
( ) [ (c c ) (d d ) ] exp( ) ,

d d

i i
i

i
i i i

i z i

s F s

s F s F
h h k

σ λ

λτ λ λ
λ

=

=

=

 
= − − + + + + −  

∑

∑
, (14) 

where F1, F2, …, F7 are integration constants to be determined by imposing the boundary 
conditions, and λ1, λ2, …, λ6 are the roots of the characteristic equation, 

 6 4 2ˆ ˆˆ 0b c dλ λ λ+ + + = . (15) 

Internal forces 

The internal forces can be deduced by substituting the interfacial stresses (14) into equations 
(4) and (5), and integrating with respect to s. Thus, six new integration constants, F8, F9, …, 
F13, appear. Then, by substituting the internal forces into equations (1) and (2), and 
integrating with respect to s, the expressions of the displacements, involving six more 
constants, F14, F15, …, F19, are obtained. To sum up, there are 19 integration constants to be 
determined by imposing the boundary conditions (9). Although these equations consist of 
only 9 independent equations, by introducing the expressions of the interfacial stresses and 
displacements into equations (11), it can be proved the independent constants are only 12, 
three of which represent a rigid displacement of the whole system. 

Through the stated solution strategy, the internal forces in beams are determined as follows: 

 

26
1 2

1 1 2 7 82
11 1 2 2

26
1 2

2 1 2 7 92
11 1 2 2

6
1 2

1 1 7
1 1 1 2 2 1

2

( ) [ ] exp( ) ,

( ) [ ] exp( ) ;

( ) exp( ) ( ) ,

( ) ex

i
i i

i z i

i
i i

i z i

i
i

i i

i

i

d dW
N s F c c s F s F

d h d h k

d dW
N s F c c s F s F

d h d h k

F a aW
Q s W s h F

d h d h d h

F
Q s W

λ λ
λ

λ λ
λ

λ
λ

λ

=

=

=

 +
= − − + + + −  

 +
= − − − + + + −  

+
= − − +

−

=

∑

∑

∑
6

1 2
2 7

1 1 1 2 2 2

26
1 2 7 8 1 9 22

1 1 2 1 2
11 1 2 2 1

26
1 2 7 8 1 9 21

2 1 2 2 2
11 1 2 2

p( ) ( ) ;

( )
( ) [( ) ] exp( ) ,

( )
( ) [( ) ] exp( )

i
i

i
i i

i z i

i
i i

i z i

a aW
s h F

d h d h d h

a a F s F a F ad hW
M s F c c h s

d h d h k d h

a a F s F a F ad hW
M s F c c h s

d h d h k

λ

λ λ
λ

λ λ
λ

=

=

=

+
− +

−

 + + +
= − − + − −  

+ + +
= − − + −

−

∑

∑

∑
2

.
d h

 
 
 

 (16) 

The values of the integration constants, F1, F2, …, F9, are determined for each specific 
problem by substituting equations (16) into the boundary conditions (9). In simpler cases, the 
resulting set of 9 linear equations can be solved analytically. In more complex cases, it is 
more convenient to solve that equation set numerically. 
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INTERFACIAL CRACK PROPAGATION 

Interfacial crack propagation occurs when the energy release rate, G, attains a critical value, 

c ( )G ψ , computed according to a suitable mixed-mode crack-growth criterion [1], where 

 II

I

arctan
G
G

ψ =  (17) 

is the mode-mixity angle. 

In the considered two-layer system, crack propagation may initiate at either of the two end 
sections, O or B, which, depending on the particular problem being analysed, correspond to 
existing crack tips or free edges. Here, the energy release rates are 

 ,I ,IIO O OG G G= +         and        ,I ,IIB B BG G G= + , (18) 

where 

 
2 2

,I ,II
z x

,
2 2

O O
O OG G

k k
σ τ

= =         and        
2 2

,I ,II
z x

,
2 2

B B
B BG G

k k
σ τ

= =  (19) 

are the respective contributions related to fracture modes I and II, and 

 

36
1 2

1 2 76
1

0 0
1 1 1 2 2

36
1 2

1 2 76
1

1 1 1 2 2

[ ( ) ]
, ,

[ ( ) ] exp( )
exp( ), .

i
i i

i z i
O i Os s

i

i
i i i

i z i
B i i Bs b s b

i

d d
F c c F

k
F

d h d h

d d
F c c b F

k
F b

d h d h

λ λ
λσ σ τ τ

λ λ λ
λσ σ λ τ τ

=
= =

=

=
= =

=

+− + + +
= = = = −

−

+− + + +
= = = = −

−

∑
∑

∑
∑

 (20) 

Finally, the mode-mixity angles at the two end sections can be computed, 

 ,II

,I

arctan O
O

O

G

G
ψ =         and        ,II

,I

arctan B
B

B

G

G
ψ = . (21) 

APPLICATION: THE SINGLE-LAP JOINT (SLJ) TEST 

As an example of application, the single-lap joint (SLJ) test (Fig. 3) is considered [9]. 

 

Fig. 3: The single-lap joint (SLJ) test 
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The forces acting at the end sections of the layered element (Fig. 4) in this case are: 

 1 1 1 2 1 1 1

2 2 2 2 2 2 1

, 0, ; 0, 0, 0;

0, 0, 0; , 0, .

O O O B B B

O O O B B B

N P Q M Ph N Q M

N Q M N P Q M Ph

= = = = = =
= = = = = = −

 (22) 

 

Fig. 4: Two-layer system corresponding to the single-lap joint (SLJ) test specimen 

A specimen with the following sizes is considered [10]: W = 25 mm, H = 4 mm, b = 50 mm, 
H1 = 1 mm, H2 = 3 mm. The elastic moduli are Ex = 106.3 GPa and Gzx = 40.0 GPa. Hence, 
the beams’ stiffnesses are A1 = Ex H1 = 106300 N/mm, C1 = 5 Gzx H1 / 6 = 33333 N/mm, 
D1 = Ex H1

3 / 12 = 8858 N mm, A2 = Ex H2 = 318900 N/mm, C2 = 5 Gzx H2 / 6 = 100000 N/mm, 
D2 = Ex H2

3 / 12 = 239170 N mm. The assumed interface constants are kx = 1500 N/mm3 and 
kz = 4100 N/mm3. The applied load is P = 5000 N. 

Figure 5 shows the interfacial normal and tangential interfacial stresses as functions of the 
abscissa s. The peak values at section O are σO = 180 MPa and τO = 61 MPa. 
Correspondingly, the energy release rate is GO = 5221 J/m2 and the mode-mixity angle is 
ψO = 29.2°. The values at section B are σB = 0.1 MPa and τB = 9.6 MPa. Correspondingly, 
the energy release rate is GB = 36.6 J/m2 and the mode-mixity angle is ψB = 67.0°. Although, 
in general, the mixed-mode crack-growth criterion should be specified in order to predict 
crack growth, for the case under examination it is more likely that crack propagation would 
initiate from section O, where considerably higher values of interfacial stresses and energy 
release rate are detected. 
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Fig. 5: SLJ specimen: interfacial stresses 
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CONCLUSIONS 

The problem of an interfacial crack propagating between two different elastic layers has been 
analysed. The layers have been modelled as shear-deformable laminated beams of finite 
length, connected one another by an interface of negligible thickness, and subjected to 
general loads at their ends. A complete explicit solution has been obtained for the internal 
forces and interfacial stresses. Hence, explicit expressions for the energy release rate and 
mode mixity angle have been deduced. 

As an example, the model has been applied to the case of an unbalanced single-lap joint test. 
However, the obtained solution can be effectively used to deal with a wide gamut of 
interfacial fracture problems, ranging from test specimens to real structures. 
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