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Abstract. We present a feasibility study on the use of piezoelectric devices to harvest the energy

connected to the vibrations induced on road bridges by travelling vehicles. We have selected an

existing urban bridge as case study and collected the available documentation about its original

design. Furthermore, the results of a past experimental campaign on the bridge have provided

experimental evidence about the natural frequencies and mode shapes of the structure. Next,

we have set up a three-dimensional finite element model of the bridge, which is currently being

calibrated to match the results of the experimental dynamic analysis.

Besides, we have developed a mechanical model of a laminated cantilever beam with a top

piezoelectric layer and a concentrated mass on its free end. Our model applies to laminated

beams with general (asymmetric) stacking sequences, thus representing an extension of similar

models of the literature. The partial differential equation of motion has been determined and

solved in the case of free vibrations under both open- and short-circuit electrical boundary

conditions. As a numerical example, a piezoelectric cantilever beam has been designed with

the same first natural frequency of the case study bridge.
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1 INTRODUCTION

Methods for energy harvesting aim to transform the kinetic energy linked to structural vi-

brations or motion of fluids – such as wind and water currents – into electrical energy by using

electromagnetic induction, piezoelectricity, or other useful material properties [1]. Piezoelec-

tricity is the property of some materials to generate an electric voltage if subject to mechanical

deformation [2]. Devices based on the piezoelectric effect have proven effective to harvest

energy from environmental or machinery vibrations. A simple, yet effective configuration for

such devices consists of cantilever beams – made of either metallic or composite materials –

with layers of piezoelectric material, which oscillate together with the structure to which they

are connected [3]. Recently, the use of piezoelectric cantilevers has been proposed to scavenge

energy from the vibrations of bridges under moving loads. However, studies of the literature are

until now based on simplified models of bridges, which consider only their in-plane behaviour

as one-dimensional beams and not their real three-dimensional structure [4].

In this paper, we present a feasibility study on the use of piezoelectric devices to harvest the

energy connected to the vibrations induced on road bridges by travelling vehicles. To this aim,

an existing urban bridge has been chosen as case study with the aim of evaluating the amount

of energy that can be harvested under real operational conditions. As a first step of the study,

we have collected previous documentation about the original design and a later experimental

campaign on the bridge. The latter has provided experimental evidence about the natural fre-

quencies and mode shapes of the structure. Next, we have set up a three-dimensional finite

element model of the bridge, which is currently being calibrated to match the results of the

experimental dynamic analysis.

Besides, we have developed a mechanical model of a laminated cantilever beam with a top

piezoelectric layer and a concentrated mass on its free end. Our model applies to laminated

beams with general stacking sequences. In particular, the effects stemming from asymmetric

stacking sequences – i.e. the elastic bending-extension coupling and the additional inertial terms

due to the eccentricity between the centre of mass and laminate mid-plane – can be rigorously

taken into account. In this respect, our model represents an extension of similar models of the

literature [5]. The partial differential equation of motion has been determined and solved in

the case of free vibrations under both open- and short-circuit electrical boundary conditions.

As a numerical example, a piezoelectric cantilever beam has been designed with the same first

natural frequency of the case study bridge.

As a work in progress, the following steps are foreseen in the present study:

(i) the mechanical model of the piezoelectric cantilever beam will be extended to obtain the

dynamic response under support excitation; to this aim, a previously developed method

for the analysis of laminated plates will be suitably extended [6][7];

(ii) general electrical boundary conditions will be considered to evaluate the obtainable elec-

trical energy output;

(iii) dynamic transient analysis of the finite element model of the case study bridge will be

carried out to determine its response under moving vehicles;

(iv) the outputs of previous dynamic analyses in terms of displacement vs. time histories at

selected points of the bridge will be used as input for the piezoelectric cantilever model;

(v) lastly, an optimised design of the piezoelectric devices and their arrangement on the

bridge will be pursued to maximise the efficiency of the energy harvesting system.
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2 A CASE STUDY: THE CITTADELLA BRIDGE IN PISA

2.1 General description

The Cittadella bridge is an urban bridge located in Pisa, Italy, built in 1953. It crosses the

Arno river connecting the northern and southern parts of the town. The current road section

includes a one-way (North to South) vehicle lane, a bike lane, and two lateral walkways.

As for the structural scheme, the Cittadella bridge can be classified as a symmetrical, three-

span cantilever bridge. The two outer spans (almost 29 m long) are covered by two girders,

which are simply supported at the abutments and lean continuously over the riverbed piers. The

inner span (about 48 m long) consists of two lateral cantilevers and a central girder resting on

Gerber internal supports (Fig. 1).

Figure 1: Side view of the Cittadella bridge.

The bridge is made of reinforced concrete with an internal steel structure. Actually, a peculiar

construction technique was used to build the bridge. First, a so-called Melan beam, made of

welded steel profiles, was built. This acted as a centring for the successive phase of concrete

casting. After the curing of concrete, the Melan beam collaborates with concrete together with

ordinary steel reinforcement bars. The cross section of the bridge presents a bi-cellular box

geometry, with variable overall height (from 1.5 m on the abutments to 3.5 m on the piers) and

thickness of the walls (from 0.15 to 0.40 m).

2.2 Experimental dynamic analysis

In 1993, the engineering company A.I.C.E. Consulting S.r.l. [8] conducted an experimental

campaign on the bridge. Through the use of accelerometers placed at characteristic sections of

the bridge, the first natural frequencies were determined under free environmental vibrations.

From comparison of the acquisitions coming from couples of accelerometers placed at symmet-

ric points with respect to both the transverse and longitudinal directions of the bridge, it was

possible to associate each natural frequency to a corresponding mode shape (see Tab. 1).

Mode number Frequency Mode shape

[Hz]

1 2.40 symmetric flexural

2 3.40 antisymmetric flexural

3 6.10 symmetric flexural

Table 1: Experimentally determined natural frequencies and mode shapes
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2.3 Finite element model of the bridge

A finite element model of the bridge has been defined by using the commercial software

Straus7 [9]. Beam elements are used to model the internal steel structure of the Melan beam.

Plate elements are used to model the concrete slabs of the bi-cellular box section. Additional

non-structural masses are introduced to model the effects of constructive elements, such as road

pavement, railings, etc. (Fig. 2).

Figure 2: Finite element model of the Cittadella bridge.

The model is currently being calibrated to retrace the experimentally determined dynamic

response in terms of natural frequencies and mode shapes under free vibrations. Subsequently,

we will simulate the behaviour of the bridge under travelling vehicles. The dynamic response

in terms of displacement vs. time histories at selected points of the bridge will be used as an

input for the mechanical model of the piezoelectric cantilever beams. The final goal will be

to evaluate quantitatively the amount of energy that can be harvested under normal operative

conditions of the bridge.

3 MECHANICAL MODEL OF A PIEZOELECTRIC CANTILEVER BEAM

3.1 Model geometry

Let us consider a laminated cantilever beam of length L and width b, comprised of a support

layer of elastic material and a top thin layer of piezoelectric material. We denote tb and tp
the thicknesses of the support and the piezoelectric layer, respectively (Fig. 3). In turn, the

support layer may be either homogeneous or made of several layers of different thicknesses and

materials. Both cases are treated unitedly in what follows, as we use classical lamination theory

to model the support layer as a homogenised laminate [10].

A global Cartesian reference system is fixed with the origin at the geometric centre of the

clamped-end cross section, the x-axis aligned with the cantilever longitudinal direction, the z-

axis normal to the lamination plane, and the y-axis aligned so as to complete a right-handed

reference frame.
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Figure 3: Piezoelectric cantilever beam.

3.2 Constitutive relationships

3.2.1 Piezoelectric material

Under small electric field conditions, the constitutive relationships for a piezoelectric mate-

rial are [11]:

ǫk = sEkmσm + dcjkEj (1)

Di = ddimσm + eσijEj

where ǫk is the mechanical strain, σm is the mechanical stress, Di is the electrical displacement,

and Ej is the electric field; furthermore, skm is the compliance under zero or constant electrical

field (indicated by the superscript E) and eσij is the dielectric permittivity under zero or constant

stress (indicated by the superscript σ); lastly, dcjk and ddim are the piezoelectric coefficients which

defines respectively strain per unit field at constant stress and electric displacement per unit

stress at constant electric field; superscripts c and d have been added to differentiate between

the converse and the direct piezoelectric effect, though in practice they have the same exact

numerical value [12].

By following the de Saint Venant’s assumption on the stress field, i.e. σy = σz = τyz = 0,

and ignoring the Poisson’s effect [7], the former three-dimensional equations can be reduced to

the one-dimensional case and solved for σx and Dz, giving:

σx = Q11ǫx − PcV/tp (2)

Dz = Pcǫx + epV/tp

where Q11 denotes the reduced stiffness [10], Pc = Q
(p)

11 d31 is a piezoelectric coupling factor

[5], in which Q
(p)

11 is the first element of the stiffness matrix of the piezoelectric material and

ep = (ez − Pcd31) is an equivalent dielectric permittivity constant. The electric field, Ez,

supposed constant over the small layer thickness, has been replaced with the generated voltage,

V .
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3.2.2 Piezoelectric laminated cantilever beam

In line with Euler-Bernoulli beam theory, the stress resultants of interest acting on the can-

tilever cross section are the axial force, Nx, and the bending moment, My (Fig. 4), which can

be expressed in terms of the normal stress, σx, as follows:

Nx =
nt
∑

k=1

∫ zk

zk−1

σ(k)
x bdz +

∫ zp

zp−tp

σ(p)
x bdz (3)

My =
nt
∑

k=1

∫ zk

zk−1

σ(k)
x · z bdz +

∫ zp

zp−tp

σ(p)
x · z bdz

where zi is the ordinate of the bottom surface of the i-th layer, nt is the number of ordinary

layers, and zp is the ordinate of the top surface of the piezoelectric layer. Furthermore, we

denote with h = (tb + tp)/2 the half-thickness of the cross section (Fig. 5).
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Figure 4: Positive resultant forces and bending moment.
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Figure 5: Geometry of laminated composite beam section.

By substituting the first of Eq.s 2 in 3, we can rewrite the former expressions in the more

compact form:

Nx = A · ǫ0 + B · k − PcbV (4)

My = B · ǫ0 + D · k −
PcbV

2
(2h− tp)

where A, B and D respectively are the homogenised extensional, coupling, and bending stiff-

ness constants of a laminate [10]. Eq.s 4 represent the constitutive laws for a laminated beam,
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inclusive for the top layer of piezoelectric material. Moreover, by imposing that the overall

axial force is null, we can solve Eq.s 4 for ǫ0, finding:

ǫ0 = −
B

A
· k +

PcbV

A
(5)

By substituting the obtained expression into Eq.s 4, and expressing ǫ0 and k via the kinematic

field, we obtain:

u0,x =
B

A
w,xx +

Pcb

A
V (6)

My = −D
∗w,xx − ΓpV

where D
∗ = D − B

2/A and Γp = Pcb(Bp/Ap − B/A). Eq.s 6 are the modified constitutive

relationships which relate the overall bending moment My, the section curvature k, and the

voltage V in a laminated cantilever beam with a layer of piezoelectric material.

3.3 Partial differential equation of motion

The equation of motion can be derived by considering the equilibrium of all the forces act-

ing along the x and z-directions and of the bending moments acting around the y-axis on an

elementary beam segment (Fig. 6). Developing calculations leads to:

M(x, t),xx + I∗2w(x, t),xxtt − I0w(x, t),tt = 0 (7)

where I0 and I∗2 are both inertial constants, in detail I∗2 = (I2−I21/I0) and their expressions can

be found in [6]. By substituting the second of Eq.s 6 into 7 and accounting that voltage is inde-

pendent from the x-coordinate, we obtain the governing differential equation of the problem:

D
∗w(x, t),xxxx − I∗2w(x, t),xxtt + I0w(x, t),tt = 0 (8)

 

My

Qz Nx + dNx

Qz + dQz

My + dMy

A
Nx

dxdx

mI

gI

fI

Figure 6: Equilibrium of a differential element of the beam.

3.4 Analysis of free vibrations

For the free vibration analysis, a solution for Eq. 8 is sought in the form:

w(x, t) = Φ(x) · y(t) (9)
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Following this approach, by substituting Eq. 9 into 8, we are able to obtain two uncoupled

equations of motion, one in the time domain and one in the space, respectively [13]:

y(t),tt + ω2y(t) = 0 (10)

Φ(x),xxxx + ω2 I
∗

2

D∗
Φ(x),xx − ω2 I0

D∗
Φ(x) = 0

The first equation is the classical solution for the free vibrations of an undamped SDOF; the

second one can be solved by looking for the roots of the characteristic polynomial, yielding:

Φ(x) =
4
∑

i=1

Ci · e
λix (11)

where:

λ1,2 = ±

√

√

√

√

I∗2
2D∗

·

(

1 +

√

1 +
4I0D∗

(I∗2ω)
2

)

· jω = ±µ1(ω) · j ∈ C (12)

λ3,4 = ±

√

√

√

√

I∗2
2D∗

·

(

−1 +

√

1 +
4I0D∗

(I∗2ω)
2

)

· ω = ±µ2(ω) ∈ R

Setting equal to zero the imaginary part of the right-hand side of the former equation leads to

the final expression for the solution:

Φ(x) = A1cos[µ1(ω)x] + A2sin[µ1(ω)x] + A3e
−µ2(ω)x + A4e

µ2(ω)x (13)

where Ai are four real constants that must be evaluated so as to satisfy the boundary conditions.

These are:

Φ(0) = 0 Φ,x(0) = 0 (14)

Φ,xx(L) + k1Φ,x(L) = 0 Φ,xxx(L) + k2Φ(L) = 0

In these equations, Φ(L),x stands for the first derivative of Φ(x) calculated in x = L, and

so on. The first two conditions stand respectively for the initial deflection and slope to be

null, the second two describe the values of bending moment and shear force at the free end

in the presence of a tip mass mt, with moment of inertia jt. The values of the constants are

k1 = [ω2jt + Γ2
p/(αC0)]/D

∗, and k2 = ω2m∗

t/D
∗. The system derived from the imposition

of the boundary conditions, which is linear in Ai, can then be written in its final matrix form.

Since the system of equations is homogeneous in the variables Ai, the only possible non-trivial

solutions are the ones which nullify the determinant of the associated coefficient matrix. Setting

to zero this determinant and looking for its roots finally yields to the eigenfrequencies of the

beam.

3.5 Electrical boundary conditions

Two limit electrical boundary conditions are investigated in this paper:

• short circuit (SC);

• open circuit (OC).
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3.5.1 Short-circuit condition

The short-circuit condition entails that the voltage across the piezoelectric layer is null. This

condition is trivial, since it leads to the same solution as for an ordinary Euler-Bernoulli beam.

3.5.2 Open-circuit condition

In open-circuit condition, the electrical constitutive relation can be re-written by integrating

both sides of the second of Eq.s 2 over the piezoelectric surface, parallel to the xy-plane. Since

the total free charge in the piezoelectric layer is zero, after some calculations, we obtain:

V (t) =
ΓpΦ(L),x

αC0

y(t) (15)

where C0 = ep(bL/tp) is the piezoelectric layer equivalent capacitance and α = 1+(P 2
c btp/epA)

is a collector factor.

4 NUMERICAL EXAMPLE

To illustrate the model, we have carried out the preliminary design of a piezoelectric can-

tilever beam to be used on the case study bridge. Accordingly, the cantilever beam has been

designed in such a way that its first natural frequency matches as close as possible the first nat-

ural frequencies of the bridge, f1 = 2.40 Hz. For the sake of simplicity, we have considered

a metallic (steel) support layer. The properties of the piezoelectric layers are the same used by

Karimi et al. [4]. The design values of the geometrical, electrical, and mechanical parameters

are shown in Tab. 2. The calculated natural frequencies for the first five vibration modes are

shown in Tab. 3 for both SC and OC conditions.

tp tb b L mt jt Q
(p)

11 Q
(b)

11 Pc ez

[mm] [mm] [mm] [mm] [kg] [mm2 kg] [GPa] [GPa] [C/m2] [C2/Nm2]

0.1 1.0 30.0 350.0 0.161 55.556 64 210 −12.16 1451e0

Table 2: Geometrical values of the cantilever beam

Mode number SC OC

[Hz] [Hz]

1 2.382 2.396

2 33.931 33.960

3 113.475 113.479

4 232.916 232.917

5 389.397 389.398

Table 3: Numerical values of the frequency output
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5 CONCLUSIONS

We have presented a feasibility study on the use of piezoelectric devices to harvest energy

from the vibrations of road bridges. Present developments and results include the following:

• an existing urban bridge, namely the Cittadella bridge in Pisa, Italy, has been selected as

case study; the original design documents and the results of a past experimental campaign

on the bridge have been collected; such information has been used to define a three-

dimensional finite element model of the bridge;

• a mechanical model of a laminated piezoelectric cantilever beam has been developed;

an analytic solution has been determined for the free vibrations under both open- and

short-circuit electrical conditions;

• as a numerical example, a piezoelectric cantilever beam has been designed with the same

first natural frequency of the case study bridge.

Future developments of the present study include the following actions:

• the model of the cantilever beam will be extended to obtain the dynamic response under

support excitation and general electrical boundary conditions;

• dynamic transient analyses will be carried out on the finite element model of the bridge

to determine its response under moving vehicles;

• the outputs of previous dynamic analyses in terms of displacement vs. time histories at

selected points of the bridge will be used as input for the piezoelectric cantilever model;

• lastly, an optimised design of the piezoelectric devices and their arrangement on the

bridge will be pursued to maximise the efficiency of the energy harvesting system.
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