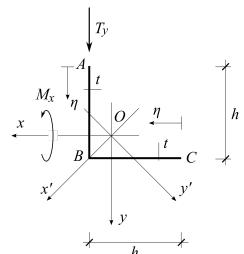
Università di Pisa

Esame di Scienza delle Costruzioni II


Corso di Laurea in Ingegneria Civile, Ambientale e Edile (Docenti: Prof. Ing. Stefano Bennati - Prof. Ing. Riccardo Barsotti)

Prova scritta del 19 luglio 2022

La sezione trasversale mostrata in figura $(t/h \ll 1)$ è soggetta all'azione di uno sforzo di taglio T_y diretto parallelamente all'asse y e un momento flettente M_x . Le proprietà geometriche della sezione sono:

$$A = 2th$$
, $J_x = 5th^3/24$, $J_y = 5th^3/24$ $J_{xy} = -th^3/8$, $J_{x'} = th^3/3$, $J_{y'} = th^3/12$, $J_{xy'} = 0$.

- 1. Determinare l'andamento delle tensioni normali σ_z nei tratti AB e BC della linea media. Calcolare il massimo e il minimo valore di σ_z .
- 2. Disegnare i diagrammi quotati delle tensioni normali nei tratti AB e BC della linea media, specificando il verso delle stesse in ciascun tratto.
- 3. Determinare l'andamento delle tensioni tangenziali nei tratti AB e BC della linea media. Calcolarne il valore massimo.
- 4. Disegnare i diagrammi quotati delle tensioni tangenziali nei tratti AB e BC della linea media, specificando il verso delle stesse in ciascun tratto.
- 5. Assumendo che sia $M_x = 5T_y h$, calcolare la tensione ideale secondo von Mises nel vertice B della linea media.

