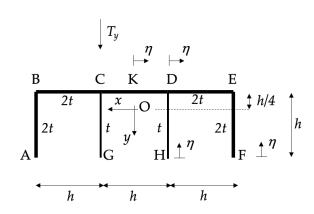

Corso di Laurea in Ingegneria Civile Ambientale Edile – Università di Pisa, a.a. 2021-22 SCIENZA DELLE COSTRUZIONI

(Docenti: Prof. Ing. Riccardo Barsotti; Prof. Ing. Stefano Bennati)


Prova Scritta del 10 gennaio 2023

Problema 1 [16/30].

Nel sistema di figura tutte le travi sono flessibili e inestensibili.

- 1) Decomporre il problema nella quota simmetrica e in quella antisimmetrica.
- 2) Utilizzando le condizioni di simmetria opportune, ridurre lo studio del problema simmetrico a quello della metà destra del sistema. Mostrare che il sistema simmetrico è staticamente non determinato una volta e risolvere il problema mediante il *metodo delle forze*. In particolare, dopo aver scelto opportunamente l'incognita iperstatica *X*₁:
 - determinare le espressioni delle caratteristiche della sollecitazione nei sistemi F_0 e F_1 e tracciarne i diagrammi quotati;
 - determinare i coefficienti delle equazioni di Müller-Breslau, *precisando il significato geometrico di ciascuno di essi*; calcolare il valore dell'incognita iperstatica *X*₁;
 - tracciare i diagrammi quotati delle sollecitazioni nel sistema effettivo.
- 3) Utilizzando le condizioni di simmetria opportune, ridurre lo studio del problema antisimmetrico a quello della metà destra del sistema. Mostrare che il sistema antisimmetrico è staticamente determinato, determinare le caratteristiche della sollecitazione in tutte le travi e tracciarne i diagrammi quotati.
- 4) Calcolare la componente orizzontale di spostamento dell'estremo F.

Problema 2 [16/30].

La sezione trasversale mostrata in figura (assumere h/t = 10; $J_x = 5th^3/4$) è soggetta all'azione di uno sforzo di taglio T_y diretto parallelamente all'asse y e di un momento flettente $M_x = T_y l$.

- 1) Determinare l'andamento delle tensioni normali e disegnare il diagramma corrispondente.
- 2) Determinare l'andamento delle tensioni tangenziali nei tratti KD, DE, HD, HF della linea media utilizzando opportunamente le formule di Jourawski e di Prandtl.
- 3) Disegnare i diagrammi quotati delle tensioni tangenziali in tutti i tratti della linea media, specificando il verso delle stesse in ciascun tratto.
- 4) Posto l = 100 mm, h = 50 mm, assumendo che la tensione limite del materiale sia $\sigma_0 = 200$ N/mmq e scelto come criterio di crisi quello di von Mises, verificare se $T_y = 20$ kN è ammissibile per la sezione trasversale.

NOTE