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LIMIT ANALYSIS OF MASONRY ARCH BRIDGES

Limit analysis

Funicular arch 

Check under dead loads 

Check under moving loads 

Check under horizontal actions 
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STRUCTURAL MODEL

The arch is composed by stone 
voussoirs laid dry without mortar 

Hypotheses: 

Sliding failure cannot occur
Stone has no tensile strength

Compression strength σ0 is infinite
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LIMIT ANALYSIS: HYPOTHESES 

Stone has no tensile strength: this is almost exactly true in this kind of 
structures, made up of voussoir laid either dry or with very weak mortar: 
although stone itself may have some tensile strength, the joints will not, 
therefore no tensile forces can be transmitted from one voussoir to another. 

Sliding failure cannot occur: in fact, friction between voussoirs is high 
enough to suppose that they cannot slide on one another. Besides, shear 
forces are low. 

The compression strength, σ0, can be supposed to be infinite: as we 
can see from the analysis of existing bridges, stresses are low enough not to 
allow crushing of the material. This observation is equivalent to the 
assumption that stone has an infinite compressive strength. 
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NO-TENSION MATERIAL

0 
t M = byσ  -y
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

0  N = by σ  

For each “y” we calculate N and M: 

ε

σ

σ 0

Constitutive law

  tb = N  00 σ

The limit compression force and limit moment are
2

0 0 
t M  = b σ
8

Paolo Clemente Limit analysis of masonry arch bridges 6

LIMIT DOMAIN: Rectangular Cross-section
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The position of the neutral axis is individualised by the tangent to the domain 

The limit domain is composed by two parabolic curves

The curvature is constant 
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MATERIAL: Constitutive law

Compressive strength is infinite

No strain 

No tensile strength 

ε

σσ 0
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LIMIT DOMAIN for σ → ∞

2t N  = M ±

tcos
N
M= 

2
t  = 

dN
dM= y =±

 0 = 
dN

Md 2

2

∞σ → 0 
If

Each point of these lines represents a state of stress in which the axial force N 
lies in one of the masonry surfaces, its distance from the centre-point of the 
section being given by 

then the two parabolic curves become two 
straight lines, tangential to parabolic ones at the 
origin 

The curvature is



5

Paolo Clemente Limit analysis of masonry arch bridges 9

LIMIT DOMAIN: Considerations

The hypothesis

So only the portion of the limit 
domain very close to the origin is 
meaningful 

In this zone the domain can be 
confused with the two tangential 
lines 

is equivalent to the hypothesis that the axial force N is very low in 
comparison with N0:

∞→ 0 σ

0N N <<
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COLLAPSE OF THE CROSS-SECTION

On the point of collapse the resultant force is at the extrados or at the 
intrados of the cross-section. 

Then the collapse consists in the formation of a hinge at a free edge. 

The two cross-sections can rotate one to the other around the extrados or 
the intrados. 

At internal hinges the resultant must be tangential to the edge: F = N. 
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SERVICE CONDITION

If no hypotheses are made on the constitutive relation-ship of the material the 
effective diagram of stresses cannot be determined.

Obviously, in service conditions, the resultant force must be at an internal 
point of the cross-section. 
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COLLAPSE OF THE STRUCTURE

In other words the arch is on the point of collapse if we can find a line of thrust 
lying wholly within the masonry, which: 

- represents an equilibrium state for the structure under the external loads and 

- allows the formation of sufficient hinges to transform it into a mechanism. 

Failure of the arch occurs when sufficient hinges form to turn the structure into 
a mechanism 
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UNIQUENESS THEOREM

To state the uniqueness theorem, it is necessary to point out a preliminary 
observation. 

Since a proportional increasing load cannot cause any change in the line of 
the thrust, it is important to distinguish dead loads from variable loads.

Uniqueness theorem
If the variable loads are specified as ratios of one of their number and they 
have been increased from their working values to the collapse values by a 
load factor, while the dead load does not change, the value of that load 
factor on the point of collapse is unique. 
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SAFE THEOREM
Safe theorem
A structure is safe if a line of thrust in equilibrium with the service loads and 
lying wholly within the masonry can be found 

Considerations
The thrust line of the safe theorem need not be the actual thrust line: every 
thrust line in equilibrium with external loads, lying within the arch profile, if 
any, can be chosen to check the structure 

We do not know the actual stresses in the cross-section. We did not make 
any assumption about the material constitutive relationship, but the fact that 
the thrust line lies within the masonry ensures that there is only compressive 
action, which can be transmitted from one cross-section to the next
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LINE OF THRUST - 1
A line of thrust indicates a suitable position and slope of the resultant force at zi

For a given external load, we can draw infinite lines of thrust. A line of thrust if 
defined if we fix 3 points (statically admissible) 

1 1
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n n

+ λ − − =∑ ∑

( ) ( ) ( ) ( )
1 1

i 3 i i 3 i 1 3 1 1 3 1W z z λ P z z V z z H y y 0
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( ) ( ) ( ) ( )
B Bi i

j 2 j j 2 j 1 2 1 1 2 1
1 1

W z z λ P z z V z z H y y 0⋅ − + − − − + − =∑ ∑

1 3H H 0− =

We deduce V1, V2, H1

If P1, P2 and P3 are fixed, 
we can write the 
equilibrium equations
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LINE OF THRUST - 2
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We deduce the height of the resultant at “zi”: 

iM 0=
It must be 
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LINE OF THRUST - 3

We can find a suitable line of thrust in the arch by fixing three hinges. 

If we can find a line of thrust lying wholly within the masonry, then the arch is 
safe. 

∆ s

If the centre line is a suitable line of thrust then the arch is funicular of the 
given load
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LIMIT ANALYSIS OF MASONRY ARCH BRIDGES

Limit analysis

Funicular arch 

Check under dead loads 

Check under moving loads 

Check under horizontal actions 
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FUNICULAR ARCH

The arch is funicular with reference to a load condition

The arch is funicular with reference to a load condition if so is its centre line

Usually, we consider arches funicular with reference to dead loads

Suppose dead load to be uniformly distributed along the span, then the 
centre line of the funicular arch has parabolic shape

We consider moving load coming on to the bridge. 

So the load condition consists in a uniformly distributed load between z=0 and 
the end load abscissa zp, which individualised the load condition
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FUNICULAR ARCH: Collapse Mechanism

∫ η⋅=
L

0w dzwP

∫ η⋅= pz

0p dzpP

C2B zzz <<

Under a fixed load condition, for any given mechanism, and so for any field of 
velocity η, consistent with the external constraints, which satisfies the 
compatibility condition: 

we calculate the virtual 
powers: 

0 = P  + P pw λ

  PP-=   pwλ

The equilibrium 
equation can be written 

The kinematically admissible load factor can be deduced
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FUNICULAR ARCH: Equilibrium Equation

0 = P  + P pw λ

) ) load factor = min (kinematic admissible  = max (statically admissible λ λ

there are no terms with the internal forces acting at the hinges. 

This circumstance is greatly appreciable, because the values of the internal 
forces are still unknown 

We must find the minimum kinematically admissible load factor, which is 
also statically admissible: 

It is very important to observe that in the equilibrium equation

This can be done by using an iteration procedure. 
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ITERATION PROCEDURE - 1
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Dead and travelling loads for each voussoirs

Virtual powers: 

Kinematically admissible load factor: 

∆ s
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ITERATION PROCEDURE - 2

0VVPW DAii =−−λ+ ∑∑
nn

11
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Equilibrium equations

We deduce VA, VD, HA

λ
λ

Loads: w + λp
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ITERATION PROCEDURE - 3
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Internal forces at section “i”: 

Finally

λ
λ

We calculate the position of the resultant with reference to the centre line
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FUNICUL ARCH: Iteration Procedure

1) Give a first mechanism and the corresponding diagram of velocity

2) The equilibrium equation can be written: Pw + λ*Pp = 0 

3) The kinematically admissible load factor can be evaluated: (λ=Pw/Pp)
and then the actual collapse travelling load (λp) 

4) The external reactions can be found out

5) The internal reaction (Ni and Mi) can be evaluated (i.e., the line of thrust
passing through the assumed hinges) 

6) The eccentricity can be evaluated for each section: ei = Mi/Ni

The value of λ is the collapse load factor only if 
ei < t/2 

at each section (i.e.,the line of thrust passing through the assumed hinges is 
elsewhere within the masonry). 

If it is not, in the next step we must move the hinges to the cross-section where 
there are the maximum distances between the line of thrust and the arch profile 
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FUNICULAR ARCH: Numerical investigation

The minimum load factor is the collapse load factor λmin

In the numerical investigation we assume p = w

For each moving load condition (zp) we find the collapse mechanism and the 
corresponding load factor 

The diagrams shows two characteristic points
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FUNICULAR ARCH: z1

The first one, z1, individualises the minimum value of λ, which corresponds to 
the half-span load condition (zp=0.45*L) 

The small difference between 0.5 and the found value of z1 is due to the offset 
of hinges from the centre line, which results in a non perfectly anti-symmetric 
mechanism of collapse with respect to the mid-span 

Diagrams show a flat central part around that point, which leads to state that a 
load condition close to the worst is achieved for a wide range of load length 
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FUNICULAR ARCH: z2

The diagram also shows the presence of a vertical asymptote at zp = z2 ≈ 0.70 

When the load length approaches L the stability of the arch increases  

If zp > z2 there is no danger of failure, because the hypothesized mechanism 
cannot be exploited under such a load condition 

It is worth reminding that the centre line of a parabolic arch coincides with the 
funicular polygon of a uniformly distributed load
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FUNICULAR ARCH: Minimum Load Factor

When λ = λmin

then zp = z1

it is also zp = z2

Actually, for a given mechanism, this is the load condition for which Pp
assumes its maximum value and λ is the minimum one 
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FUNICULAR ARCH: Dead Load Contribution

2p zz =

( )−+ −⋅= AAwPw
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−
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If

In order λ to be positive, it must be 

On the point of collapse, the equilibrium is guaranteed by Pw, which must be 
negative. Dead loads have a stabilizing effect

And the load factor is

then
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FUNICULAR ARCH: zC, z2 and zB versus zp

It is always  zB < z2 < zC

If  zp = z1 it is also z1 = z2

Funicular Arch
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FUNICULAR ARCH: z1, z2 versus t/L e f/L 

z1 is independent of thickness t and of sag f. We assume z1 = 0.45*L

z2 shows higher variation 

Funicular Arch
f/L = 0.35

0,0

0,2

0,4

0,6

0,8

1,0

0 0,01 0,02 0,03 0,04 0,05
t/L

z/
L

z2/L

z1/L
Funicular Arch

t/L = 0.03

0,0

0,2

0,4

0,6

0,8

1,0

0 0,1 0,2 0,3 0,4 0,5
f/L

z/
L

z2/L

z1/L



17

Paolo Clemente Limit analysis of masonry arch bridges 33

FUNICULAR ARCH: λmin versus t

As we expected, λ increases with t. 

The relationship between λ and t is slightly different from a linear law 
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FUNICULAR ARCH: λmin versus f 

The load factor λ increases quickly as f decreases. 

The reason for this behaviour is the following: when the arch has a small 
height, stresses due to dead loads are very high, so that the structure becomes 
less vulnerable to the travelling load. A very high load is necessary to move the 
line of thrust
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FUNICULAR ARCH: influence of f 
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LIMIT ANALYSIS OF MASONRY ARCH BRIDGES

Limit analysis

Funicular arch 

Check under dead loads

Check under moving loads 

Check under horizontal actions 
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DEAD LOADS: Minimum Thickness

Otherwise a minimum depth of the arch exists to contain the line of thrust. 

If the arch is thinner, then it will immediately collapse; if the arch thickness is 
larger than the minimum necessary to contain the thrust line, then it will stand.

If the centre-line of the voussoir coincides exactly with one line of thrust in 
equilibrium with dead loads (self-weight and fill), there is no danger of 
"mechanism-type" failure and the arch can be designed as thin as the material 
strength allows.

∆ s
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MINIMUM THICKNESS

The minimum depth can be defined as follows: by supposing that the depth is 
exactly equal to the minimum one, then just one line of the thrust, lying wholly 
within the masonry, can be found. This line touches the arch profile, alternatively 
at the intrados and the extrados, at a sufficient number of points to turn the 
structure into a mechanism. 

When this happens the arch is on the point of collapse under dead loads.



20

Paolo Clemente Limit analysis of masonry arch bridges 41

DEAD LOADS: Collapse Mechanism

Since the structural geometry and loads are symmetric, the mechanism of 
collapse must be symmetric too. Consequently at least 5 hinges form, one of 
them being at the crown.
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MINIMUM THICKNESS: PARABOLIC ARCH - 1

This consideration suggests how we can find the mechanism of collapse using 
an iteration procedure which can be started by using a given value of the 
depth and drawing the line of thrust passing through the intrados at the crown 
and the springings. The maximum distance between the intrados and the 
thrust line can be assumed as the value of the depth in the next step 

If we consider, with reference to a parabolic arch, a line of thrust in equilibrium 
with dead loads which touches the intrados at the crown and at the springings, 
we find that it is wholly above the intrados 
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MINIMUM THICKNESS: PARABOLIC ARCH - 2

Dead loads change in each iteration due to the arch thickness variation; as a 
consequence the thrust line changes too. Of course the line of thrust will be 
tangential to the arch profile at the internal hinges (B,C and D)

We will find the minimum thickness when the corresponding line of thrust, 
passing through the three above mentioned points, lies wholly within the 
masonry and touches the extrados at two symmetrical points
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MINIMUM THICKNESS: CIRCULAR ARCH - 1

The assumption that a line of thrust touching the intrados at the crown and at 
the springings is wholly above the intrados is not always true in the case of a 
circular arch. So the mechanism of collapse may be different from the one 
described for the parabolic arch 

For circular arch we prefer to define the geometry by means of the radius R 
and the angle of embrace β. 

Consider the arch of fixed radius R and the series of arches obtained by 
increasing β
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MINIMUM THICKNESS: CIRCULAR ARCH - 2

When β is small (f/L small), we can confirm what already said about the 
parabolic arch: a line of thrust in equilibrium with dead loads, which touches the 
intrados at the crown and at the springings, is wholly above the intrados 

So the collapse mechanism is of the same kind as for the parabolic arch and we 
can use the same iteration procedure used for the parabolic arch

This happens up to a certain value β1
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MINIMUM THICKNESS: CIRCULAR ARCH - 3

The thrust line is tangential to the intrados at β = β1 and is internal to the arch  
profile in the sections between β = β1 and the springings

The minimum thickness keep constant and equal to that relative to β=β1

If β = β1, the collapse mechanism is still the same and the thrust line is 
tangential to the intrados at the springings

If β is greater than a particular value β1, hinges A and E will not form at the 
springings and the mechanism will regard only the portion of the structure, 
individualised by β = β1
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MINIMUM THICKNESS: CIRCULAR ARCH - 4

For β>β2 the 5 hinges still individualize a part of the structure for which β=β1 but 
the line of thrust crosses the extrados at two sections between β1 and the 
springings

This is true up to a certain value β2

For β = β2 the line of thrust crosses the extrados at the springings
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MINIMUM THICKNESS: CIRCULAR ARCH - 5

Anyway, in order to contain the thrust line in the arch profile, large increment 
of the thickness is needed 

The values of β1 and β2 depend on the loads (dead load and backfill) 

In order to determine the minimum thickness beyond this threshold, one 
should refer to the condition that the thrust line be within the arch profile near 
the springing, since there is no more question of mechanism failure 
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MINIMUM THICKNESS: CIRCULAR ARCH - 6

The semicircular arch cannot be funicular of any vertical load condition. In fact 
the funicular curve of any vertical load, which is similar to the diagram of the 
bending moment of a simple supported beam, cannot present vertical tangent at 
the springings. In this case the shear force at the ends should be infinite

We deduce that the semicircular arch can be realised only with very high depth
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MINIMUM THICKNESS: CIRCULAR ARCH - 7

The collapse mechanism may also change when γ is very low

In this case the thrust line touching the extrados at the crown and the 
springings is wholly below the extrados 

So the iteration procedure can be started by using a given value of the depth 
and drawing the line of thrust passing through the extrados at crown and 
springings

The maximum distance between the extrados and the thrust line approximates 
the minimum thickness very well 

However, it can be assumed as a trial value in the next step 

As you can see the kind of collapse mechanism depends on the geometrical 
characteristics and on the loads
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MINIMUM THICKNESS: CIRCULAR ARCH - 8

The diagrams of tmin/R versus β for different values of γ and h/R show the same 
intervals of β already individualised 

The geometrical and load parameters have low influence on both β1 and β2, 
which can be assumed equal to:

β1 = 2π/3 β2 = 10π/11

γ = ratio between the weight per unit volume of the fill and of the masonry
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COMPARISON BETWEEN PARABOLIC AND 
CIRCULAR ARCHES - 1

In order to compare parabolic and circular arches, the geometry of this latest 
must be defined by means of f/L and the height above the crown by means of  
h/L, as for the parabolic arch 

tmin/L decreases when h/L gets higher. When the fill above the crown become 
very high in comparison to self weigth and backfill, the load tends to a uniformly 
distributed load for which the parabolic arch is funicular

tmin/L gets higher when  γ increases  for h=0 
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COMPARISON BETWEEN PARABOLIC AND 
CIRCULAR ARCHES - 2

When f/L increases the two shapes 
show very different behaviour

The circular arch shows a more complex behaviour. The curves for different 
values of γ show that tmin/L increases with f/L up to a maximum point, then it 
gets lower. We can state that the sag ratio has no high influence on the 
minimum thickness except for low values of f/L. Besides, the horizontal part of 
the diagram, found in correspondence of (β1, β2), is missing due to the variation 
of L and therefore of tmin/L.

For the parabolic arch the minimum 
thickness gets higher with f
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COMPARISON BETWEEN PARABOLIC AND 
CIRCULAR ARCHES - 3

In all the diagrams the curves relative to the circular arch give always values of 
tmin lower than those of the parabolic arch 

We can conclude that the circular shape is more suitable to support dead 
loads (self weight and backfill) 
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CHECK UNDER DEAD LOADS - 1

The structural stability under dead loads can be evaluated first, by means of 
locating at least one thrust line which lies wholly within the arch profile. 

As already said, it is possible to estimate the minimum thickness tmin the 
structure needs to contain such a thrust line. 

If the actual depth t is greater than tmin the structure is safe, and its lifetime 
will depend on the decay of the materials.

The ratio between the actual depth and the theoretical minimum one can be 
assumed as a measure of safety when only dead loads are acting on the 
masonry arch; moreover the greater α, the greater the structure will be able 
to carry travelling loads 

t
tα

min
=
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CHECK UNDER DEAD LOADS - 2

The question is the safety margin with reference to a non proportional 
variation of the loads but also to a reduction of the effective cross-section, 
due to cracks or damages to the material.

In this latest case it is meaningful to evaluate the difference 

which represents the maximum crack or the maximum imperfection under 
dead loads

mintt −=∆
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LIMIT ANALYSIS OF MASONRY ARCH BRIDGES

Limit analysis

Funicular arch 

Check under dead loads 

Check under moving loads 

Check under horizontal actions 
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TRAVELLING LOADS: Collapse Mechanism

Suppose that one thrust line in equilibrium with the dead loads exists which 
lies wholly within the masonry. Symmetry is not an issue here, because loads 
can lie anywhere on the structure 

When the travelling loads are put in action and are increased from zero to the 
collapse value the line of thrust changes and at least four hinges form. At the 
point of collapse the thrust line must pass through the hinge points. At hinges 
at internal cross-sections the thrust line must be tangential to the arch profile 
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TRAVELLING LOADS: Iteration Procedure - 1

0 = P  + P pw λ

( )∫ η+=
L

0
1w dzwwP

∫ η=
pz

0
p dzpP

pw PP−=λ

Pw and Pp are the 
virtual powers due to 
dead and travelling 
loads respectively 

The mechanism of collapse and the corresponding load factor may be found in 
the usual way using an iteration procedure. This can be started giving a first 
mechanism and the corresponding diagram of velocity. 

The equation of equilibrium can be written: 

The  kinematic admissible load factor can be deduced
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TRAVELLING LOADS: Iteration Procedure - 2

∑ ⋅=
n

1
iiw ηWP

Dead and travelling loads for each voussoirs

Virtual powers: 

∑ ⋅=
n

1
iip ηPP

( ) i1iii ∆zwwW ⋅+=

iii ∆zpP ⋅=

∑

∑

⋅

⋅
−= n

1
ii

n

1
ii

ηP

ηW
λ

Kinematically admissible load factor: 

∆ s
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TRAVELLING LOADS: Iteration Procedure - 2

0VVPW DAii =−−λ+ ∑∑
nn

11

( ) ( ) ( ) ( ) 0yyHzzVzzPλzzW ADAADAiDiiDi =−−−−−+−⋅ ∑∑
nn

11

( ) ( ) ( ) ( ) 0yyHzzVzzPλzzW ABAABA

i

1
jBj

i

1
jBj

BB

=−+−−−+−⋅ ∑∑

0HH DA =−

Equilibrium equations

We deduce VA, VD, HA

Loads: Wi + λPi λ
λ
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TRAVELLING LOADS: Iteration Procedure - 3

Internal forces at section “i”: 

∑∑ −−=
i

1
j

i

1
jAi PλWVV

Ai HH =

iiiii cosαHsenαVN ⋅+⋅=

iiiii senαHcosαVT ⋅−⋅=

( ) ( ) ( ) ( )
i i

i A i A A i A j i j j i j
1 1

M V z z H y y W z z P z z′ ′ ′ ′= ⋅ − − ⋅ − − − − λ −∑ ∑

iii NMe =

Finally

λ
λ

We calculate the position of the resultant with reference to the centre line
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TRAVELLING LOADS: Iteration Procedure - 2

Once λ is known we can evaluate: 

1) the loads acting on the structures 

2) the external reactions 

3) the line of thrust passing through the assumed hinges

The value of λ is the collapse load factor if it is also statically admissible, i.e., if 
the line of thrust passing through the supposed hinges is elsewhere within the 
masonry

ei < t/2
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TRAVELLING LOADS: Iteration Procedure - 3

If λ is not a statically 
admissible factor, in the next 
step we move the hinges to 
the cross-sections where the 
distances between the line of 
thrust and the arch profile are 
maximum 

The procedure will be 
repeated until the line of 
thrust is everywhere within 
the masonry 
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TRAVELLING LOADS: Numerical investigation

∫ +=
L

0
1 dz)ww(

L
1p

A uniform travelling load p 
acting from the center-point 
of the left springing to the 
section at zp is considered, 
in order to simulate a load 
coming on to the bridge 

We assume

With this kind of load the hinge A will certainly form at the left springing. Hinge D 
may or may not form at the right springing 

Then, during each iteration we must move three hinges (B, C, and D) 
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TRAVELLING LOADS: λmin

For each load condition the load factor λ and the corresponding collapse 
mechanism has been found

The diagram of λ versus zp shows two characteristic points 

z1, which individualises the minimum value of λ

z2, which individualises a vertical asymptote 
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TRAVELLING LOADS: z1 and z2

The diagrams show a flat central part around z1, which leads to state that a 
load condition close to the worst is achieved for a wide range of load length 

The diagrams also show a vertical asymptote at zp=z2≈0.70. When zp
approaches L the stability of the arch increases. 

If zp>z2 there is no danger of failure, because the hypothesized mechanism 
cannot be exploited under such a load condition. This is exactly true for the 
parabolic shape, whose centre line actually fits the funicular polygon of the 
travelling load.
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TRAVELLING LOADS: Hinge Locations 

Hinge D may be not at the springing. This happens for the parabolic arch when 
zp<L/2 and therefore also when λ = λmin

Obviously, when λ=λmin it is z2=zp. Actually, for a given mechanism, this is the 
load condition for which Pp assumes its maximum value and λ the minimum one 
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TRAVELLING LOADS: Influence of t and f on z1

A wide numerical investigation on different values of the parameters t and f, 
showed that z1 is almost constant and independent of t and f,, and it can be 
assumed equal to:

z1 = 0.33 for the parabolic arch 

z1 = 0.38 for the circular arch 
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TRAVELLING LOADS: Influence of t on λmin

The load factor λ gets higher with t 

The relationship between λ and t is slightly different from a linear law
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TRAVELLING LOADS: Influence of f on λmin

The reason for this behaviour is the following: when the arch has a small height, 
stresses due to dead loads are very high, so that the structure becomes less 
vulnerable to travelling loads. A very high load is necessary to move the line of 
thrust. 

The load factor λ increases quickly as f decreases 
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CHECK UNDER TRAVELLING LOADS

The check under dead loads has been carried out by comparing the effective 
thickness with the minimum one for which the line of thrust is wholly within the 
masonry 

A numerical investigation has been carried out in order to evaluate the influence 
of α on the load factor λ for both parabolic and circular shape 

t
tα

min
=

It is interesting to find out what load factor λ corresponds to a given value of α
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TRAVELLING LOADS: λ versus α

∫ +=
L

0
1 dz)ww(

L
1p

λ increases with α. Both the shapes show a remarkable influence of γ on the 
value of λ: the load factor increases with γ

This influence is more 
important than we can 
see from the diagrams 
because of the 
assumed definition of 
the reference travelling 
load value, being equal 
to the mean dead load
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TRAVELLING LOADS: Influence of f on λ-α

With reference to f the two shapes 
perform in different ways

Finally, for a given α, the values of λ for the parabolic shape are always greater 
than the values of the circular shape 

The curves λ-α relative to the 
parabolic arch are quite independent 
of the height f (λ increases very little 
with f) 

For the circular arch the influence of f 
on λ-α curves is not negligible. This 
time λ decreases with f and this 
influence increases with γ. 
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LIMIT ANALYSIS OF MASONRY ARCH BRIDGES

Limit analysis

Funicular arch 

Check under dead loads 

Check under moving loads 

Check under horizontal actions
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INTRODUCTION TO SEISMIC ANALYSIS - 1

The behaviour of the arch made up of rigid voussoir laid dry is very different 
from that of an elastic structure, especially when subject to seismic actions. 

In fact, the vulnerability of an elastic structure under seismic loading is 
essentially related to the frequency content of the seismic input. 

If the Fourier spectrum of this shows significant content at the main structural 
resonances, the structure is sensitive to it and may present high values of the 
amplification factor from the basement to the top. 

Vice versa if the frequencies of the structure are not in the interval in which the 
seismic input spectrum shows important amplitudes, the earthquake will have 
not important effects on the structure 
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INTRODUCTION TO SEISMIC ANALYSIS - 2

The study of an arch of rigid voussoir must be performed in a very different 
way. Because of its infinite rigidity, a stone arch does not show relative motion 
with respect to its base, until the amplitude of the external load is that to turn 
the structure into a mechanism. 

From this consideration one can deduce that the safety check of stone arches 
can be studied as a static problem
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INTRODUCTION TO SEISMIC ANALYSIS - 2

If the arch is subject to the self-weight only, the horizontal forces are equal to 
the product between the mass of each voussoir and the horizontal 
acceleration  and are applied at the centre gravity of each voussoir, i.e. at the 
same point of the vertical loads. 

The structure is subjected to a parallel forces system, whose direction is 
determined by the ratio  between the horizontal ground acceleration and the 
gravity acceleration. 

It is as the springings of the arch were not at the same height, and the 
structure was fixed on a inclined plane

If the back-fill is acting on the structure the problem is quite complex. Suppose 
that its base is subjected to a horizontal negative acceleration

gx&&−
Each voussoir is subjected to the inertial force due to its own mass, acting at 
the centre point of the voussoir. Four models are assumed to simulate the 
structure - back-fill interaction
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SEISMIC ACTION: Model M1

Model M1

each voussoir on the left is subjected to the inertial force due to an horizontal 
strip of the back-fill, and acting at its centre point. The length of this strip is 
assumed to be equal to the distance between the arch centre line and the 
vertical line passing through the left springing of the arch. The back-fill on the 
right tends to separate from the arch, because of its inertial forces. As a result 
the right half structure is subject to vertical loads and own inertial forces due to 
its own mass only 
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SEISMIC ACTION: Model M2

Model M2

the left half arch is loaded as in the model M1. The back-fill on the right is 
supposed to be attached to the structure. As a result the voussoir of the right 
half arch are subjected to the inertial forces due to an horizontal strip of the 
back-fill and acting at its centre point. The length of this strip is assumed to be 
equal to the distance between the centre line and the vertical line passing 
through the right springing 

This load condition is anti-symmetric 
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SEISMIC ACTION: Model M3

Model M3

each voussoir is subjected to an horizontal force equal to the vertical loads
acting on it 

Also this load condition is anti-symmetric
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SEISMIC ACTION: Model M4

Model M4

the inertial load is simulated with a uniform load acting on the left half arch, 
whose resultant is equal to the total inertial load of structure - plus - back-fill

L

v0
1 f q dz⋅ ⋅∫
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SEISMIC ACTION MODELLING 

The first model M1 seems to 
be the most realistic 

Model M2 represents the 
opposite limit case with 
respect to M1 

Models M3 and M4 are the 
most simple and useful for the 
preliminary check of the 
structure   

In all the cases a reference 
value of the acceleration equal 
to the gravity acceleration has 
been assumed
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STRUCTURAL MODEL 
Suppose that one thrust line in equilibrium with the dead loads exists which 
lies wholly within the masonry. The base of the arch is subjected to a negative 
horizontal acceleration . 

In this condition the arch is subjected to the vertical loads and to the 
horizontal inertial forces due to the acceleration. 

According to the safe theorem the structure is safe if a line of thrust in 
equilibrium with the external loads and lying wholly within the masonry can be 
found
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SEISMIC ACTION: Mechanism Model 
In this case the horizontal loads play the role of the live loads, whereas the 
vertical ones are fixed. 

The uniqueness theorem is still valid. 

When the seismic loads are put in action and are increased from zero to the 
collapse value, the line of thrust changes and at least four hinges form. At the 
point of collapse the thrust line must pass through the hinge points. If the 
hinge is at an internal section the line of thrust must be tangential to the arch 
profile
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SEISMIC ACTION: Iteration Procedure - 1

Pv and Ph are the virtual 
powers due to vertical and 
horizontal loads 
respectively 

Collapse mechanism and load factor can be found by using the same iteration 
procedure shown in the case of the vertical travelling load. This can be started 
giving a first mechanism and the corresponding diagrams of the velocity 
components. The equation of equilibrium can be written 

0 = P  + P hv λ

∫ η⋅=
L

0 vv dzpP

∫ ζ⋅=
Lz

0 hh dzpP
pv(z) = the vertical dead load 
ph(z) = the horizontal load, 
η(z) = vertical component of the velocity
ς(z) = the horizontal components of the velocity 
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SEISMIC ACTION: Iteration Procedure - 2

The  kinematically admissible load factor can be deduced 

hv PP−=λ

and so the load intensity associated with the assumed mechanism.

The load being known, it is possible to find out the reactions and then the line of 
thrust passing through the assumed hinges. 

The vertical loads have a stabilizing effect. In fact, because there are no terms 
with the internal forces acting at the hinges, which are still unknown, the 
equilibrium on the point of collapse is guaranteed by Pv which must be negative 

0 = P  + P hv λ
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SEISMIC ACTION: Iteration Procedure - 3

The value of λ is the 
collapse load factor only if it 
is also statically admissible, 
i.e., if the line of thrust, 
passing through the 
hypothesized hinges, is 
elsewhere within the 
masonry 

If it is not, in the next step 
we must move the hinges 
to the sections where there 
are the maximum distances 
between the line of thrust 
and the arch profile 

The load factors λ in the numerical investigation represent the ratio between the 
acceleration needed to turn the structure into a mechanism and the gravity 
acceleration g
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SEISMIC ACTION: Hinge Locations 

Parabolic arch
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Usually hinge A forms always at the left springing, hinge D may not form at 
the right end 

This is not always true, but depends on the values of γ

In the circular arch, for γ very low and high value of f/L, hinge A does not form 
at the left end, and hinge D is at the right springing 

The influence of the seismic action modeling on the hinge locations is very low 
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SEISMIC ACTION: Influence of t on λmin

As we expected, λ increases with t/L 

The curves start from the minimum value of the depth under vertical dead 
loads 
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SEISMIC ACTION: Influence of f on λmin

The load factor λ increases quickly as f/L decreases: when the arch has a 
small height, stresses due to dead loads are very high, and the structure 
becomes less vulnerable to live loads. A very high load is necessary to move 
the line of thrust 

The maximum value of f/L is related by the assumed value of t/L
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SEISMIC ACTION: Influence of γ on λmin

The relationship between λ and γ is slightly different from a linear law 

When γ=0 the curves all start from the same value of λ, which represent the 
load factor for the arch subject to its self-weight only
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SEISMIC ACTION : Comparison

The curves relative to model M1, 
which is to be considered as the 
better one, show values of λ always 
greater than the others. 

The minimum values of λ are 
obtained by using the model M4, 
which represents the most 
conservative model of the seismic 
actions. 

The simplest model, M3, for which 
the horizontal forces are proportional 
to the vertical ones for each 
voussoir, shows values of λ
intermediate between those of cases 
M1 and M2

Paolo Clemente Limit analysis of masonry arch bridges 97

SEISMIC CHECK 

The check of stone arches subject to seismic action loads is a static matter 

So the analysis can be performed by using the same iteration procedure used 
fort he static loads 

The most suitable loading pattern for seismic actions seams to be M1, but 
results very close to it are obtained also in case M3.

The load factors found in the numerical investigation represent the ratio 
between the acceleration needed to turn the structure into a mechanism and the 
gravity acceleration 

So the safety check of a stone arch can be performed just by comparing the 
load factor with the acceleration peak of the actual earthquakes


