Università degli Studi di PISA Dipartimento di Ingegneria Strutturale **Pisa, 9 Ottobre 2006**

Un'applicazione pratica del modello di frattura (rivisitato) di Bourdin, Francfort e Marigo: lo studio del degrado nel Panthéon Francese a Parigi

Gianni Royer-Carfagni

Dipartimento di Ingegneria Civile, dell'Ambiente, del Territorio e Architettura (DICATAR). Università di Parma, Parco Area delle Scienze 181/A, 43100 Parma, Italia; e-mail: gianni.royer@unipr.it

Il lavoro è stato svolto in collaborazione con **Giovanni Lancioni**, dell'Università Politecnica delle Marche.

Studio nell'ambito di uno programma di ricerca commissionato dal Ministero Francese della Cultura e della Comunicazione, coordinato dal Prof. Arch. **Carlo Blasi**, dell'Università di Parma.

- 1754 Luigi XV supports the construction of the new Church dedicated to Sainte Geneviève;
- 1755 J.G. Soufflot is charged with the design;
- 1757 J-G. Soufflot publishes the design, which contemplates the use of "pierre armée";
- 1758 the construction work starts;
- 1764 ceremony for the laying of the foundation stone;
- **1768-70 Pierre Patte questions about the stability;**
- 1776 First cracks in the pylons of the main dome;
- 1780 Soufflot dies and his assistant, J. B. Rondelet, succeeds in the work direction;
- 1790 Rondelet completes the main dome;
- 1791 Quatremère de Quincy is charged to convert the church into Panthéon;
- 1793 Quatremère bricks in the windows and demolishes the bell towers;
- 1797 Rondelet publishes his "Mémoire historique sur le dôme du Pantèon français;
- **1798 The pylons of the main dome are shored up;**
- 1806-12 Rondelet consolidates the pylons; cracks form;
-some blocks fracture and big stone fragments fall down from vaults and arches;
- **1985** The access to the monument is interdicted;
- 2005 The monument is opened again.

The structural scheme

Dome Tambour Plafond

Very thin structure in "reinforced stone"

THREE DOMES

The construction material

pierre armée (reinforced Stone)

CIE - E	
CALL TO THE TOTAL	
	THE FLETTER EDNI
	Partients and States and States
and a state of the state	In the state of th
PRODET A	
VIA DETAL	A DE CALLED
	ALL A CONSISTENCY OF A STOCKED AND A CONSISTENCY A CONSISTENCY AND A STOCKED AND A

Steel reinforcement of the stone ashlars

Main faults and debates

Three phases

St. Peter, Rome

MATERIAL TESTING, STRESS CALCULATION AND STRENGTH LIMIT

Average stress ≅ 1/10 strength by testing

Marchina di Gauthey & Soufflet

SURVEY OF THE CRACKS IN THE PYLONS, DEFINITION OF THE CAUSES, STUDIES ABOUT THE THRUST IN THE DOMES AND DESIGN OF THE CONSOLIDATION WORKS

SECOND PHASE OF THE DEBATE : when the main cracks in the pylons of the dome first start to form (1780 - 1800)

"Questo pilastro è quello che ha avuto il maggior cedimento. Grazie a dei controlli di livello effettuati in tempi diversi, si è potuto verificare che si è accorciato di 5 pollici e 2 linee e $\frac{1}{2}$ (140 mm); dato che la colonna isolata, che sostiene l'angolo della tribuna adiacente a sinistra del pilone ha avuto un accorciamento di sole 8 linee e $\frac{1}{2}$ (18 mm), ne deriva una inclinazione di 4 pollici e $\frac{1}{2}$ (122 mm) dell'architrave...."Rondelet

Rondelet memory: cracks in the ashlar masonry of the pylon

Mortar shrinks as it dries and most of the load is taken through the slips of wood

Gauthey (1796):

Calculates the thrust of the Pantheon dome. Comparison with the dome of St. Peter in Rome

Thrust in domes?

Gauthey: Proposal for pillar strengthening

2005 02 24

Stress: A: 1,37 Mpa

B: 0,50 Mpa

<u>C: 9,00 Mpa</u>

D: 1,18 Mpa

sagging:

20-25 cm

(D. Ferretti)

Third phase of the debate : Crack opening due to long-term phenomena; iron reinforcement oxidation (1980-2005)

Symmetric crack paths in the lower circle

South-east nave

North-east nave

21000002000050202000000

Typical crack path in the ashlar masonry

Damage in the ashlars

Is it provoked by the reinforcement expansion due to iron oxidation...

... or by the pull out of the staples

?

THE MODEL

Bourdin, Francfort, Marigo model (JMPS, 2000)

$$\mathbf{E} = sym(\nabla \mathbf{u}), \ \mathbf{C} = 2\mu\mathbf{I} + \lambda\mathbf{I} \otimes \mathbf{I}, \ k_{\varepsilon} \qquad 1$$

 $[\varepsilon] = [L], \quad 0 < \varepsilon << diam(\Omega)$

$$\Pi_{\varepsilon}[\mathbf{u},s] = \int_{\Omega} \left[(s^2 + k_{\varepsilon}) \frac{1}{2} \mathbf{C} \mathbf{E}(\mathbf{u}) \cdot \mathbf{E}(\mathbf{u}) \right] da + \gamma \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla s|^2 + \frac{(1-s)^2}{2\varepsilon} \right] da$$

 $\min_{(u,s)\in\mathcal{A}_t}\Pi_{\varepsilon}[\mathbf{u},s]$

 $\mathcal{A}_{t} = \left\{ (\mathbf{u}, s) \in W^{1,2}(\Omega, \mathbb{R}^{2}) \times W^{1,2}(\Omega, \mathbb{R}) : \mathbf{u} = \overline{\mathbf{u}}(t) \text{ on } \mathcal{D} \text{ and } s = 1 \text{ on } \partial \Omega \right\}$

 $\dot{s} \leq 0 \quad \forall t$, s = 1 at t = 0 Irreversibility constraint

Condition s = 1 on $\partial \Omega$ is different from BFM, JMPS 2000. No need of logic domain

Euristic argument

Suppose Ω is the rectangle and ω is straight and parallel to *y*

We want to evaluate:

Assume that s(x,y) is of the type represented in the Figure with

$$s_{,y} = 0:$$

$$\chi \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla s|^2 + \frac{(1-s)^2}{2\varepsilon} \right] da$$

Euristic argument

 $\forall (\alpha, \beta) \in \mathbb{R} \times \mathbb{R}: \ \alpha^2 + \beta^2 \ge 2 |\alpha| |\beta| \text{ and } \alpha^2 + \beta^2 = 2 |\alpha| |\beta| \text{ iff } |\alpha| = |\beta|$

$$\gamma \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla s|^{2} + \frac{(1-s)^{2}}{2\varepsilon} \right] da \ge \gamma \int_{\Omega} \left[2\sqrt{\frac{\varepsilon}{2}} |\nabla s| \frac{(1-s)}{\sqrt{2\varepsilon}} \right] da$$
$$= \gamma \int_{\Omega} \left[|\nabla s| (1-s) \right] da$$

$$s_{y} = 0$$

 $s_{x} < 0$ for $0 < x < x_{0}$,
 $s_{x} > 0$ for $x_{0} < x < a$.
Euristic argument

$$\gamma \int_{\Omega} \left[\left| \nabla s \right| (1-s) \right] da = \gamma \int_{0}^{b} \left(\int_{0}^{x_{0}} -s_{x} (1-s) dx \right) dy + \gamma \int_{0}^{b} \left(\int_{x_{0}}^{a} s_{x} (1-s) dx \right) dy$$
$$= \gamma \int_{0}^{b} \left(\int_{0}^{x_{0}} \partial_{x} \left[(1-s)^{2} / 2 \right] dx \right) dy + \gamma \int_{0}^{b} \left(\int_{x_{0}}^{a} -\partial_{x} \left[(1-s)^{2} / 2 \right] dx \right) dy = \gamma b = \gamma \text{ meas } \omega$$

γ plays the role of fracture energy

Euristic argument

The optimal profile that attains the lower bound can be easily calculated

$$\gamma \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla s|^2 + \frac{(1-s)^2}{2\varepsilon} \right] da = \gamma \int_{\Omega} \left[|\nabla s| (1-s) \right] da \text{ when } \sqrt{\frac{\varepsilon}{2}} |\nabla s| = \frac{|1-s|}{\sqrt{2\varepsilon}}$$

$$\forall (\alpha, \beta) \in \mathbb{R} \times \mathbb{R}: \ \alpha^2 + \beta^2 \ge 2|\alpha| |\beta| \text{ and } \alpha^2 + \beta^2 = 2|\alpha| |\beta| \text{ iff } |\alpha| = |\beta|$$

From this condition find:

$$s(x) = 1 - e^{\frac{|x-x_0|}{\varepsilon}}$$

$$\Gamma\text{-convergence result}$$
$$\Pi_{\varepsilon}[\mathbf{u},s] = \int_{\Omega} \left[(s^{2} + k_{\varepsilon}) \frac{1}{2} \mathbf{C} \mathbf{E}(\mathbf{u}) \cdot \mathbf{E}(\mathbf{u}) \right] da + \gamma \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla s|^{2} + \frac{(1-s)^{2}}{2\varepsilon} \right] da$$

 $\prod_{\varepsilon \to 0} (\Pi_{\varepsilon}[\mathbf{u}, s]) = \Pi[\mathbf{u}, \omega]$

 ω is the crack location

 $\Pi[\mathbf{u}, \omega] = \int_{\Omega \setminus \omega} \frac{1}{2} \mathbf{C} \mathbf{E}(\mathbf{u}) \cdot \mathbf{E}(\mathbf{u}) \, da + \gamma \, meas(\omega) \qquad \text{Griffith crack model}$

Bourdin, Francfort, Marigo model REVISITED

B. F. M. model:

$$\Pi_{\varepsilon}[\mathbf{u},s] = \int_{\Omega} \left[(s^2 + k_{\varepsilon}) \frac{1}{2} \mathbf{C} \mathbf{E}(\mathbf{u}) \cdot \mathbf{E}(\mathbf{u}) \right] da + \gamma \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla s|^2 + \frac{(1-s)^2}{2\varepsilon} \right] da$$

Proposal:

$$\Pi_{\varepsilon}^{D}[\mathbf{u},s] = \int_{\Omega} \left[(s^{2} + k_{\varepsilon}) \frac{1}{2} \mathbf{C} \mathbf{E}_{dev}(\mathbf{u}) \cdot \mathbf{E}_{dev}(\mathbf{u}) \right] da + \int_{\Omega} \left[(1 + k_{\varepsilon}) \frac{1}{2} \mathbf{C} \mathbf{E}_{sph}(\mathbf{u}) \cdot \mathbf{E}_{sph}(\mathbf{u}) \right] da + \gamma \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla s|^{2} + \frac{(1 - s)^{2}}{2\varepsilon} \right] da,$$

$$\mathbf{E}_{dev}(\mathbf{u}) = \mathbf{E}(\mathbf{u}) - \frac{1}{3} tr \mathbf{E}(\mathbf{u}) \mathbf{I} , \quad \mathbf{E}_{sph}(\mathbf{u}) = \frac{1}{3} tr \mathbf{E}(\mathbf{u}) \mathbf{I} ,$$

Mode II fracture governed by von Mises criterion

Damage model and process zone

Process zone at crack tip

s plays the role of a damage parameter s = 1 sound material; s = 0 damaged material

Material Parameters

$$\Pi_{\varepsilon}^{D}[\mathbf{u},s] = \int_{\Omega} \left[(s^{2} + k_{\varepsilon}) W_{dev}(\mathbf{u}) \right] da + \int_{\Omega} \left[(1 + k_{\varepsilon}) W_{sph}(\mathbf{u}) \right] da + \gamma \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla s|^{2} + \frac{(1 - s)^{2}}{2\varepsilon} \right] dx,$$

Boundary Condition s=1 on $\partial \Omega$ is acceptable because of gluing

Calcareous rock

 $\mu = 4545 Mpa$; $\lambda = 1136 Mpa$ (E = 10000 Mpa; $\nu = 0.1$)

 $\gamma = 25 \cdot 10^{-3} N / mm$, $K_{\varepsilon} = 10^{-2}$

 ϵ represents the internal characteristic length $\approx 2 \div 3$ D

 $D \cong 0.5 \div 1 \text{ mm} \implies \epsilon = 2 \text{ mm}$

Numerical experiment. Cramp pull

Cramp Pull – Deformed Mesh

 $\mathbf{t} = \text{clamp pull (mm)}$. Displacement amplification = 10^2

Cramp-pull - horizontal displacement

t = clamp pull (mm). Displacement (mm)

Cramp pull – damage field s

Cramp Pull – bulk and surface energy

Cramp Pull – Force vs. displacement

Cramp Pull – Deformed Mesh BFM

 $\mathbf{t} = \text{clamp pull (mm)}$. Displacement amplification = 10^2

Cramp-pull - horizontal displacement BFM

t = clamp pull (cm). Displacement (cm)

Cramp pull – damage field s BFM

Cramp Pull – bulk and surface energy BFM

Cramp Pull – Force vs. displacement BFM

Numerical experiment. Cramp oxidation

Cramp Oxidation– Deformed Mesh

 \mathbf{t} = clamp pull (mm). Displacement amplification = 10^2

Cramp-oxidation - horizontal displacement

t = clamp pull (mm). Displacement (mm)

Cramp oxidation – damage field s

Cramp Oxidation – bulk and surface energy

Cramp oxidation – Force vs. displacement

Cramp Oxidation– Deformed Mesh BFM

 \mathbf{t} = clamp pull (cm). Displacement amplification = 10^2

Cramp-oxidation - horizontal displacement BFM t = clamp pull (cm). Displacement (cm)

Cramp oxidation – damage field s BFM

Cramp Oxidation – bulk and surface energy BFM

Cramp oxidation – Force vs. displacement BFM

Numerical experiment. Oak wood wedge contact

Contact – Deformed Mesh

 \mathbf{t} = contact dispacement (mm). Displacement amplification = 10^2

Contact - vertical displacement

t = contact displacement (mm). Displacement (mm)

Contact – damage field s

Contact – bulk and surface energy

Contact – Force vs. displacement

Contact – Deformed Mesh BFM

 \mathbf{t} = contact dispacement (mm). Displacement amplification = 10^2

Contact - vertical displacement BFM

t = contact displacement (mm). Displacement (mm)

Contact – damage field s BFM

Contact – bulk and surface energy BFM

Contact – Force vs. displacement BFM

Quantitative analysis. The pylons must have failed during construction (as documented)

Crack paths produced by different causes

FRACTURE SHAPE – CRAMP PULL

Fracture shape reproduced by simulation

Crack evolution under cramp pull

PEAK LOAD (per unit panel thickness): 500 N/mm

For a panel 300mm-thick

 $F = 500 \times 300 = 150000 N$

F 005

Fracture energy $\gamma = 25 \cdot 10^{-3}$ N/mm

If the panel is 500 mm high, hoop stress producing rupture is

 $\sigma = 150000/(300 \text{ x } 500) = 1 \text{N/mm}^2$

Such a value is compatible with the structural analysis of the vaults

Maximum displacement under peak load

 $\delta = 0.07 \text{ mm}$ BRITTLE RUPTURE

PEAK LOAD (per unit panel thickness): 250 N/mm

Corresponding displacement

t = 0.02 mm

Fracture energy $\gamma = 25 \cdot 10^{-3}$ N/mm

Crack path does not square with that observed

Nevertheless, OXIDATION CAN PRODUCE DAMAGE

Crack evolution under contact

Only the pylon periphery carry the load (length 23 m)

Stress concentrations due to wood wedges

PEAK LOAD (per unit panel thickness): **350 N/mm**

Displacement t = 0.07 mm

Load on each pylon 34000 kN

Only the pylon periphery carry the load (length 23 m)

Fracture energy $\gamma = 25 \cdot 10^{-3} \text{ N/mm}$

Load per unit length = 1480 kN/m

On each wedge (0.2m spaced) F = 1480 kN/m x 0.2 m = 300 kN

Wedge 100 mm long \Rightarrow Pressure = 300000 N / 100 mm = 3000 N/mm

 $3000 \text{ N/mm} >> 350 \text{ N/mm} \Rightarrow$ problems even before dome completion

Conclusions

- Approximations in the model: 2D (not 3D); boundary cond. (heavy use of symmetry)
- Observed crack path equal to cramp pull out simulation
- Iron oxidation cannot reproduce observed crack path
- Pylons may fail during construction (as documented) due to stress concentration from oak wedges
- Iron oxidation may be dangerous
- Revisited model is more efficient than F.B.M. model (mode II fracture and microrotations)

