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Influence of anisotropy on flexural

optimal design of plates and laminates
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Foreword

The use of composite materials forces designers to use
optimal procedures for obtaining non intuitive suitable
solutions.

Designing of laminates with respect to flexural properties is
the most cumbersome task in the design of laminates; few
researches have been carried on in this field, and the most
part of them lead to only approximate solutions.

The first task of this research was to find exact optimal
solutions to some classical flexural problems of plates,
when such plates are laminates composed of anisotropic
identical plies.
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A second task was that of assessing the influence of the
anisotropy of the material on the optimal solutions so
found: this is the topic of this talk.

Dimensionless invariant material properties have been
chosen to represent the layer elastic properties, along with
other dimensionless parameters describing geometry,
deformation and/or loading.

Some unattended features and pathological cases have
been so found.
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Governing equations: the mechanical model

Simply supported rectangular laminate made of identical
layers.

Classical lamination theory (Kirchhoff model etc.).
N |A Bj|e°
M| |B Dk

Bending stiffness tensor: _

1 3 Dyx ny Dys
12 n Z/ =1 J D= ny Dyy Dys
| Dys Dys Dgs |

dj =12j(j—n, -1)+4+3n,(n, +2) and Z ey —n
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Governing equations: supplementary assumptions

In order to dispose of an analytical solution, the laminate is
assumed to be specially orthotropic in bending:

B=0; D,,=D,=0.

In this way, the equilibrium equation for deflection w is not
coupled to the equations of in-plane displacements and the
separation of variables is possible: the Navier's method can
be applied.

For buckling, a further assumption is that
N=(N,, N,, 0)

I.e. no shearing in-plane forces (if not, the Navier's method
does not apply).
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Governing equations: fransverse equilibrium equation

|Ls3fw)=p, — equilibrium equation;

L33 —L,|w)=0 — buckling equation;

[sn—L_ (w)=0 — vibration equation;
33 @

o o o
Loz =D, +2(D,, +2De.) =~ +D,, <
33 XX 6X4 Xy SS 8X2 8y2 yy ay4

0? 02 02 0?
L,=N, % +2N. % +N, ", L =u’_,
A2 T Saxay Va2t T T a2
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Governing equations: Navier's solution method

00 .. MnX . Nn
p,(X,y)= Zm,n:1 Pmn SIN="= smTﬂy,

00 mzuzX
w(X,y)=2 . 18mn sm7smT[sm Opnt].

P « .
Pmn = ‘//men’ with

16 * 1 . P
—_—  and = —— for auniform load p = —,

w=4 and p,,, =sin n727z sin n27z for a concentrat ed load P in the center.
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Governing equations: polar parameters of the material

i o Bon Bon
5 < 5 X

\I

yy

+ 2T1

+ 2T1

+ 2T1

+Rgcos4dy +4Rqcos 2@y,
Rosind4®y,  +2R4sin 2@,

— Ry cos 4@y,

— Ry cos 49,

—Rgpsind4®y  +2R4sin 294,

+Rgcos4dy —4Rqcos 2@,.

Dy— D=k 4, k=0, 1: common orthotropy
R,=0: R,y-orthotropy
R,=0: square symmetric orthotropy
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‘ Governing equations: /laminate bending stiffness

Separation of geometry (lamination parameters) and

material (polar constants):

erx\ 1 2 &o 451_ A &, Segment of the

Dyy 1 2 950 4 51 . TO N 1 crpss-ply laminates
Dy| _h|-12 -4 O] T | |
Des [ 12| 1 0 —& 0|](-N Ry [

Feasible
domain

Dys 00 &o 284 | R; ) -
\DyS ) B O O — §2 253 ]
1 n 1 n Arc of the angle-ply
gO :3Zji1deOS45j, 51 :3Zj£1dj00825j’ B -1 laminates
n n
P p

§2 :%Z7Z1dj Sin4§j, 53 :n132721d1 S|n2§j —1 < §1 < 1, 2512 _1 < §0 S1
p Y

Specially orthotropic laminates: &, and &, are sufficient to
completely describe bending stiffness.
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Governing equations: polar form of the equations

Separation of the mean isotropic part from the pure
anisotropic part:

h3
15 (To +2T3) )AMW + T3 (~L; —L,)|w)=p

-~ 0% 0%
L33 = 12{[( 1 Roco + 4R ]——6 (-1 Roéo X2y + [(—1)kRo~”§o —4Rq& ]8}/4}

Mean isotropic part:. meaning of the polar isotropy

constants
E

TO +2T1 =
1-v

5
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Dimensionless parameters: material

RO TO + 27—1 K — 4

,0:—, T = ’
R 1/R§+R12 a

o anisotropy ratio: p =0, R,-orthotropic materials;
0 =00 : square-symmetric materials.
T . ISotropy-to-anisotropy ratio; r>1
k. orthotropy index; k=0 : low shear modulus orthotropy
k=1 : high shear modulus orthotropy

@1

Q,,: Qi k=1

= —_ o] [h]
AN NN NN
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Dimensionless parameters: Cartesian expression

For a generic orthotropic elasticity tensor T it is:

| Tyx + Ty —2(Tyy +2Tss)

Tyx —Tyy

_ 3(TXX+Tyy)+2(TXy+2TSS)
V(T +2Tes NToy +2Tes ~Tox ~Tyy )+ 2T +TE,)

k=0 if Tyx+Tyy >2(Tyy +2Tss),

k=1 if T +Tyy <2(Tyy +2Tss).
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. a
Aspect ratio: =
. m
Mode ratio: 7=;-
Wave-length ratio: =r_na
ave-length ratio: X " mb
. Ny
Force ratio: v=—>,
NX

It m=n, x=0—>I =1- . x=oc — [
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A common problem for bending, buckling and
vibrations: bending stiffness

Maximization of the bending stiffness= minimization of the
compliance Jp

Jp = Ic? _[é)pzw dx dy.

Navier's solution of equilibrium equation

By = Pmn L
™ 7% Dyya® + 2Dy, +2Dgg)af + Dy, a2’ " p2

Replacing the D; by their polar expressions we get

- ab s o
7*h3 M Ty + 2T )@+ B) + () Rodo(a® + B2 —6ap) + AR (e - B

N

;
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A common problem for...: bending stiffness

Using the dimensionless parameters above, we get

*2
Jp 3l// n Pmn

z* h%/Ro + R? 2 Zma- Tmt(1+ 2 0(50.&1)

with
2

5 |

;(4 —6;(2 +1
2)2

Pleoc) =7+ — | (- &
1-|—p (1+Z

+4§11_Z
1+ y

Further simplification: for a material, geometry and a
sinusoidal load given (i.e. for fixed m and n), the
optimization problem is reduced to the maximization of the

function (&, &).

L
e

l‘

X




‘ A common problem for...: buckling loads

Be N=1 (N,, Ny, 0), A =load multiplier.
We want to maximise 4, the buckling load multiplier for
the mode (m, n).

The Navier's non-trivial solution of the buckling equation for
the mode (m, n) is

2 Dyxa” +2(Dy, +2Dss)aB + D, B
mh Nya +N,B '

Once again, replacing the D; by their polar expressions and
using the dimensionless parameters above, we get

°m?h® |RE + R? 2.2 1+12
/lmn = 2 2 2(1—'—;{ ) 2¢(§0’§1)'
12a Ny + Ny 1+vy
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A common problem for...: natural frequencies

Finally, we consider the problem of maximising the natural
frequency w,,, of a given mode (m, n).

The Navier's non-trivial solution of the vibration equation for
the mode (m, n) is

4
/A
- 7 [Dxxaz +2(Dyy, +2Dgs )aB + Dyy,BZ ]

1. mass of the laminate per unit area of the plate's surface.

As usual, replacing the D; by their polar expressions and
using the dimensionless parameters above, we get

4 3
MmN RE + R (1+ 122 plé, &),

12,ua

L
e

|

X



A common problem for...: the objective function

Finally, the three problems above, concerning the flexural
behaviour of the laminate for a precise mode, are reduced
to the same non linear optimization problem:

maximise  ¢(&p,<&1),
subjectedto —1<¢& <1, 257 —1< &y <1.

To remark that also the opposite problem (that we will call
the anti-optimization one) is physically meaningful, as the
objective function can be proved to be always positive:

minimise  ¢(&,&1),
subjected to —-1<¢&, <1, 2(512 1< <1.
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Analysis of the objective function: separation of material

and mode
We rewrite the objective function ¢ as »

oy, &) =7 + J1+17 [(—1)k pCol(x)& +4cq(x)E ] \ //
with co(y)=% ‘(1 1;?22);1’ ¢(x)= tf; ' lllllllllll C(Z) ,,,,,,,,,,,,,

The functions cy(y) and c,(y) give the influence of the mode
and geometry. Their roots are of some importance.

p, Tand k give the influence of the material
7. gives the influence of the ply's isotropy
o . gives the influence of the ply's anisotropy
k : gives the influence of the orthotropy's type
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‘ Analysis of the objective function: pathological solutions

(&, &84) 1S linear with respect to &, £ — maxima and
minima are located on the boundary of the feasible domain.

Nonetheless, it is useful to analyse the gradient of ¢(&;,<&,):

ok
V¢(§o,§1)=£a(p ag”):[( VP o) —2— i)

08 0&1) |1+ p?
V(&o,64)70 <

=0 and y=1: this is the case of laminates made of R, -
orthotropic materials (R,=0) and with equal wave-

length ofthe mode along x and y, (e.g. square
plates and modes with m=n);

or
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Analysis of the objective function: pathological solutions

o= and y =2 +1: this is the case of laminates made of
square-symmetric materials (R,=0), i.e. reinforced by
balanced fabrics, and, if for instance m=n, having an
aspect ratio n =2 +1.

In these two circumstances, it is not possible to optimize
the laminate, because the objective function is constant
and reduces to only its isotropic part, .

Actually, in such cases, the contribution of the anisotropic
part disappears, due to special combinations of geometry,
mode and anisotropy properties of the layer: the laminate
behaves like it was made of isotropic layers, and any
possible stacking sequence give the same result.
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Analysis of the objective function: cross-ply solutions

Cross-ply laminates are represented by lamination points of
the type &,=1, —1=< £,<1; this is possible <

Vo(ép.ér)=(a%0), aex-1{o}

(-1 co(x)>0 < k=0 and ye[0,V2-1) or z>~2+1
k=1 and \/§—1<Z<\/§+1;

ax) _g o 7=1 or p=owm

«/1+p2

For the anti-optimal problem, it is sufficient in the first
condition above to change k=0 into k=1 and vice-versa, i.e.,
k changes maxima into minima and vice-versa: this is

typical.
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Analysis of the objective function: cross-ply solutions

A remark: cross-ply solutions exist only in the presence of a
generalised square-symmetry. of the material, condition
p =, or of the geometry and mode, condition =1 (e.g.,
m=n and a square plate).

The values of the solutions are
(- 1)~
for y =1, ¢ =17 — ,
A1+ p2

for p=oo, o =7+ (-1 cq(x)

To notice that in the first case p influences the extreme
values, while y in the second:
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Analysis of the objective function: cross-ply solutions

Pmax = maX[T B (_/ Dki] = maX[T + (—1)k CO(Z)](k_O _{0.0) =7+1,
+p k=1,p=o0 or_k’:)@(:’;o
: (_1)k,0] o [ k ] B
Pmin =MIN| 7 = =minjz +(-1)"co(x)] . —r—1.
[ f1+p° k=0,p=u0 g_kf&{zﬁ);)

Optimal and anti-optimal cross-ply solutions are not unique,
as &, disappears from the different expressions above: any
laminate combination of layers at 0° and at 90° is an
optimal (or anti-optimal) solution if conditions above are

satisfied.
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Analysis of the objective function: angle-ply solutions

Angle-ply laminates are located on the boundary &, = 267 —1
of the feasible domain, where
1

() peo(2)2E2 — 1)+ dey(2) ]
1+ p

(&1) =7+ 5

whose maxima and minima can be only

1 k
p=ol&=1)=1+ W[(—ﬂ pcolz)+4ei(x))

1 k
R () peo(r)-4er(n)]

sty (D pPcg(n)+ 267 (x)
Pso (0(981 (:»31 ) T W ,OC()()() ’
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Analysis of the objective function: angle-ply solutions

The corresponding orientation angles ¢ are

&4 =1 correspondsto 6 =0, — unidirectional

&1 =-1 correponds to 5:%, — unidirectional

& =& correponds to 8 = %arccos &t true angle —ply

with

TR S 1%7)
0%1] st P Colx)

Remark: it is easy to verify that for two plates having
reciprocal wave-length ratios, the respective solution
angles ¢ are complementary.
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Analysis of the objective function: angle-ply solutions

(1) ¢4 (x) <

<1.

Angle-ply solutions exist «» —1=

p  Colx)

This conditions give link the influence of the material part to
that of the mode on the existence of angle-ply optimal

2:(0)

laminates:
6
p>1 and 0< y< y(p), X
p=0 and xp(p) <z < z3(p), |
p>1 and y = y4(p); n
3p—1/8p2 +1 3p—8p2+1 3
)= ., Xx2(p)= » V241
p+1 p—1 |
V3
3p++/8p2 +1 3p++/8p2 +1
, xa(p)= TR
p+1 p—1 M
V2 -l

2(0)

0

— (p)

0

1 2
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Analysis of the objective function: angle-ply solutions

Once more k changes minima into maxima:

2
0 _ 4(—1)k P

Co(x).
5512 /71_'_102 o\¥

In particular, using the expression of c,(y) we find that

it (p>10<z<n(0) or (p>1 > 74(p)) then pss =gy for k=1
P55 = Pin for k=0
if (020, 12(p)<x < x3(P)), then @ss = @yqy for k=0, @55 =@y, for k=1.

Remark: the isotropy parameter r does not affect the
solution.
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Analysis of the objective function: map of the solutions

Considering the hierarchy of ¢,4, ¢,, and ¢,; we see that

P11> P2 < Ccx)>1 o x>1

Pss > o & {(_1)k1 [(—1)kPCo(Z)iC1(;() ’ >0

P22 Co(x)>0
V2-1<y<2+1 if k=0,
—
O<y<~2-1or y>2+1 if k=1.

Crossing all these results, we can trace a map of the
optimal and anti-optimal solutions in the plane (o, y):
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Effectiveness of the optimal solution

It is interesting to evaluate the gain of the true (angle-ply)
optimal or anti-optimal solution with respect to the intuitive

(unidirectional) one, i.e. the ratios

oo (Tp ) =090 =1 i y<d, i=2 if y>1

Dij
_Pss

S min(T, 0, %) , 1=2 if y<1 i=1if y>1

15~y gmin E
é,max - i
14—
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Effectiveness of the optimal solution: extreme value

These ratios get their extreme value for p - and =0, =1
or y—oo, ie., if m=n, for square plates or infinite strips
composed by square symmetric layers (R=0):

T+1 Qmax

maX(éVmax): 1 = Qmin , yE Q
5 XX
' N_T=1_ Qnin 4
minCmn)= = 1= g™
The effectiveness of the 2 4
solution is determined by " min
' Qo

the value of . e
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Effectiveness of the optimal solution: real materials

It can be shown that materials with k=1 are less diffused
than those with k=0, but they do exist.

Apart from square symmetric layers, p =, the most part of
composite layers have p<1 and k=0 — only the left part of
the map of solutions is usually of concern.

If o<1, the range of y where optimisation is meaningful, i.e.
where the solution is not 0° or 90°, increases with p and, for
=1, it is comprised between y =1/V/3 and y=+3.

For current materials (p=1, k=0), itis ¢, .,=2.

Some examples of materials are in the following table:
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Effectiveness of the optimal solution: real materials

S-Glass-epoxy Glass-epoxy

Braided Braided

Material Fir wood Ice BE?;I: 13[1111]; 1?30(20)1};%(;?’ C%rsb(;)(;l_ -565 (()); Y Kevlaluz;poxy S2-449/Sp balanced  carbon-epoxy carbon-epoxy
3 381 fabric BR45a BR60
Lekhnitskii, Cazzani. & Cazzani‘ & Tsai & Hahn, Tsai & Hahn, Danie! &  MIL-HDBK- Daniel. & Falzon & Falzon &
Reference 1950 Rovati, Rovati, 1980 1980 Ishai, 17-2F, Ishai, Herszberg, Herszberg,
2003 2003 1994 2002 1994 1998 1998
E; 10 11.75 387.60 205.00 181.00 86.90 47.66 29.70 40.40 30.90
E, 0.42 9.61 253.81 18.50 10.30 5.52 13.31 29.70 19.60 42.60
G, 0.75 3.00 250.00 5.59 7.17 2.14 4.75 5.30 25.00 14.00
Via 0.01 0.27 0.44 0.23 0.28 0.34 0.27 0.17 0.75 0.34
O 10 12.51 445.62 206.00 181.81 87.54 48.65 30.58 55.56 36.76
On 0.42 10.22 291.80 18.59 10.35 5.56 13.59 30.58 26.96 50.68
Oss 0.75 3.00 250.00 5.59 7.17 2.14 4.75 5.30 25 14.00
On 0.004 2.78 130.12 4.27 2.89 1.89 3.67 5.20 20.22 17.23
Ty 1.68 3.65 184.65 29.80 26.88 12.23 92.38 8.99 17.76 13.62
T, 1.30 3.54 124.71 29.14 24.74 12.11 86.97 8.94 15.37 15.24
Ro 0.93 0.65 65.35 24.21 19.71 10.09 44.86 3.70 7.24 0.38
R, 1.19 0.28 19.23 23.42 21.43 10.25 43.82 0 3.57 1.74
@, 0 0 4 0 0 0 0 0 4 4
D 0 0 0 0 0 0 0 0 0 2
k 0 0 1 0 0 0 0 0 1 ()1
0.78 2.32 3.40 1.03 0.92 0.98 1.02 0 2.03 0.22
T 2.83 15.16 6.37 2.61 2.62 2.53 4.25 7.26 6.01 24.76
Ve - - - 0.50 0.70 0.60 0.50 0.45 0.60 0.60

(modules in GPa)
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Bounds on optimal and anti-optimal solutions

We consider the influence of p and y upon ¢,., and ¢,
i.e. we look for the curves y=yx(p) in the plane (p, ¥) where
the surfaces ¢4, ¢,, and ¢, have a local or absolute
maximum (minimum) with respect to y:

i _o =125
oy

These curves are:

+
2=0, y=1 xy-o zft—q/— 1/p

st_\/3,0+1_\/8,0(,0+1) of \/3;9 1-/8p(p
Z3 - ’ ;(4
o —1 o +1

st_\/3,0_1+\/8,0(,0—1) st_\/3,0+1+\/8,0(,0+1)
Z5 - ’ Z6 - .
o +1 o —1
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Bounds on optimal and anti-optimal solutions

3 ;
i
1w 23 u g
1’2—42 ...................... f,,___
ﬁ- ||
ln, #ﬂaﬁms
“ I 3 R RS T RIS

4
L

X



‘ Bounds on optimal and anti-optimal solutions

Comparison with q,,(6):
Qux(0) _ 1

Qyy (0) = =7+ (—1)kp§0 +4& | & =cos4l, & =cos26.
7 JRE 4+ R2 1+p2[ |

So, actually ¢ is similar to q,,(0), the isotropic part is the
same (z), and only functions c,(y) and c,(y) introduce the
influence of geometry and mode in ¢. In particular, the
maximum and minimum can be only
k
Q11=C7xx(651:1)=7+(_\;§4,
LN p-4

Q22 =Qxx (&g =-1)=7 =
N1+ p

2
+ 2

doo = Clxx(§1 =—(-1)* /p)= r— (-1 £ ~, only for p>1.

p\1+ p?

also similar to ¢,,, ¢,, and @
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‘ Bounds on optimal and anti-optimal solutions

In particular, we have that the extreme values of ¢ and
q,,(0) are equal on some of the preceding curves:

g11 on =0 and y — ox;
g on y=0 and y— x;
Gop ON 1 =0,y >, y= 27 and y = z3';
To complete the comparison with ¢, let us introduce the
following intermediate values of q,,(0):

P P .
Qs1=7— , Qg2 =7+ , ony=1
) 1+p2 > «/1+p2
2p+1 2p+1 st st
Qs1=7— , Qso =7+ , on y3 and y3;
p\1+ p° p1+ p°
2p -1 2p -1

on z5t and 4&.

4s3 =7+ , Q54 =7— )
p1+ p° p1+ p°
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Bounds on optimal and anti-optimal solutions

The diagrams of ¢?, the anisotropic part of the optimal
solution: B

¢) k=1, optimal solution d) k=1, anti-optimal solution
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Bounds on optimal and anti-optimal solutions

Remark: g4, 9, and q,, bound the optimal and anti-
optimal values of ¢(&,, &), @11, o ANA @y

So, global maX|ma and minima can be taken only for y =0,
J—>0, ¥ = Stand }( ;(2, whlle local maxima and minima onIy
for =1 and on z5'to y

In addition, =1 and 75 to #§ can be absolute maxima of
the anti-optimal solution and absolute minima of the optimal
solution.

Finally, the optimal and anti-optimal values of the objective
function, can be interpreted as a sort of normal stiffness,
that takes its highest or lowest possible value in some
special cases.
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minimize ¢’ (&, &)= Zmn " pm”

The case of a non-sinusoidal load

In this case the problem of stiffness maximization is

*2

m*(1+ 2P el &o.&1)
subjectedto -1<&; <1, 251 -1<& <1,

Now, the objective function is no more linear and the
isotropic part, 7, influences the location of the solution.

Nevertheless, being

*2
Vo (6= Tt a0y L( 0 poolz), 4oi(z ];«e(o,o),

m*(1+ 2P 0% (G, \ 1+ 02 1+ p?

the solution is again on the boundary (except some
pathological situations, see below)
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The case of a non-sinusoidal load

A fundamental question is : if we consider the case m=n=1,
for which we can find the solution as seen, how much does
the optimal solution change when the whole series is
considered? To evaluate this, we introduce the ratio

P (147 o

%2 2 ’
P11 2\" Pmn
m4(1 + 772j

o)

Y
It can be seen that for m—w, >0 Vy; in addition, for =1,
i.e. if m=n, then p*2
o = mn__
m*p*%;

For instance, for a uniform load o =1/m8, viz. the term
m=n=3 is 1/6561=1.5 x10%4 the first term, while for a
concentrated load it is 1/324~3.1 x103.
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The case of a non-sinusoidal load

Generally, though not quite identical, optimal solutions for a
generic load do not differ substantially form those found for
a sinusoidal load; this means also that optimal solutions for
buckling and natural frequencies for y=n are similar to
those of bending stiffness for a generic load.

Optimal Boron- Glass- Braided
: . Carbon-

orientation Fir wood Cpoxy epOXy epoxy carbon-
angle 6 B(4)- T300-5208 balanced epoxy
55054 fabric BR45a

m=1.2 17=6.0

Ouin 52.16° 50.40° 51.05° 45° 70.64°
Ounif 51.86° 50.22° 50.82° 45° 75.68°
Orone 49.52° 48.65° 48.92° 45° 90.00°

Ouni 1 = Osin —0.30° —0.18° —0.23° 0° 5.04°
Ocone — Osin —2.66° —1.75° —2.12° 0° 19.36°

(mmaxznmax=50)
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The case of a non-sinusoidal load: pathological solutions

The previous pathological solutions do not exist, as y
changes with m and n.

Nevertheless, if p =0, functions ¢ and ¢’ do not depend
upon &, In such a case, V¢’ can be null along a line
parallel to the &, axis.

For »=1,possible solutions are a
balanced cross-ply laminate as
well as an angle-ply with 6=45°,
but also any other laminate of
the type (&£,=0, -1= &<1), for
instance isotropic laminates in
bending(&,=0, £,=0).

L
e

|

X




The case of a non-sinusoidal load: pathological solutions

The other case is p —; ¢ and ¢" do not depend upon &,.

V@'=0 for &=+1, that is for an angle ply with 5=45°, if k=0,
or for a cross-ply laminate, if k=1.

As for a sinusoidal load, all the cross-ply laminates are
possible solutions, if k=1.
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The optimal critical load of buckling

The problem is to determine the mode (m, n) that leads to
the lowest buckling load.

To this purpose, we consider the ratio
2 2
. _/a :(ma) ve+n° | vg+vn® Pa
Ap mg, yg — 772 7/62, + V772 Pb
where A, is the buckling load for m=m_, n=n_, and A4, for
m=m,, n=n,; ¢, is ¢ calculated for r/y, and ¢, for 7/y,.

2
If ».=», then g:(%) — we can consider m,=n,=1 and
b

analyse what happens for a given m_ and for y,#1.
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The optimal critical load of buckling

The two buckling loads m,=n,=1 and (m

., n,) can be found

and ¢ computed; so, for a given plate and mode (m,), we
can trace the surface representing £y,, v) and look when it
Is lower or greater than 1. The curves separating the
domains can be put in explicit form; they are:

2
b, — solution of £ »>c0: v :—7—2;
7
: 1 m2—-Ay2
b, — solution of g&=1: v=-——2_"'2
n- mgz—-A

b; — trivial solution y,=1 if m =1.

)2
2

9 (1+7°
A= 2 2
Pa (y=+1
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The optimal critical load of buckling

The areas where &1 are those where the buckling load of
the case a is greater than the one of the case b.

In this way all the significant cases can be easily verified.

Examples: carbon-epoxy, =2.62, p=0.92, k=0 (&>1 in blue).

Vi 5=0.6, m=1

Ja

o4 05 06 0O7F 08 08 1

2]
V]
1

0

g 1 12 14 168 18 2

Va

2]
V]

1

I:I.

1.2 16 2 24 25

JVa
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‘ The optimal fundamental frequency

Like for the critical load, the problem is to determine the
mode (m, n) that leads to the lowest natural frequency.

To this purpose, we consider the ratio

2 2\
WZL&) _ 1+)(2 o)
Wp 1+ y o(x)

where o, is the natural frequency for m=m_, n=n,, and o,
for m=m,, n=n,; ¢(y) is ¢ calculated for y=7/y, and ¢(y*) for
x*=nly,=yy* where y#=y_/y and m*»=m_/m,.

We can trace the curve @(m*,y*)=1 and see where @ >1.
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The optimal fundamental frequency

The equation of the curve is simply

2V .

- [HZ J (1)

1+ 72 ) o(x)

Examples: carbon-epoxy, =2.62, p0=0.92, k=0 (@>1 in
blue).

4

m*3E
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‘ Some examples of exact optimal solutions

A simple strategy for obtaining exact specially orthotropic
laminates in bending: to choose a quasi-homogeneous
solution (A/h=12D/h3, B=0) of the quasi-trivial set.

This ensures that for the angle-ply laminate will be not only
B=0, but also D,:=D =0 as they are equal to A,; and A
which are automatically null for angle-ply laminates.

So, for this class of laminates, the Navier's solutions are
exact.

Example 1: carbon-epoxy laminate, =2.62, p=0.92, k=0,
n=1.2, =1, v=1.

As 1<y=1.2<y,=1.70 and k=0, the optimal value of the
objective function is ¢,,,=¢s~3.31.
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Some examples of exact optimal solutions
The solution angle is 6=51°.

The gain with respect to the intuitive solution ¢,,=2.57 is
Cmax—1-29.

The optimal solution for bending stiffness in case of uniform
load is 6=50.8° and for concentrated load 48.9°.

Example 2: braided carbon-epoxy BR45a laminate, =6.01,
0=2.03, k=1, n=10, =1, v=1.

As »=10>4,=3.40, p>1 and k=1, the optimal value of the
objective function is ¢, =@s~7.29.
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Some examples of exact optimal solutions
The solution angle is 6=60.8°.

The gain with respect to the intuitive solution ¢,,=6.06 is
Cmax—1-2.

The optimal solution for bending stiffness in case of uniform
load is &=61.5° and for concentrated load 65.9°.

Possible exact (unsymmetrical) solutions:

8 plies: [0, -5, -0, 0, =0, 6, 6, —7]

12 p”eS: [5: _5; 5) _53; 53; _5; 5) _é]

16 plies: [0, -0, o, -0, o, —0, o, —0; I etc.
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Conclusion

The design analysis made with dimensionless invariant
parameters helps in some way the understanding of the
flexural problems in presence of anisotropy: it puts in
evidence some pathological situations and characterizes
the localization of the different types of optimal solutions as
well as their effectiveness.

This study is merely qualitative, but can help in similar
studies with other geometries and conditions.

Thank you very much for your attention.
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