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Foreword

The use of composite materials forces designers to use 
optimal procedures for obtaining non intuitive suitable 
solutions.

Designing of laminates with respect to flexural properties is 
the most cumbersome task in the design of laminates; few 
researches have been carried on in this field, and the most 
part of them lead to only approximate solutions.

The first task of this research was to find exact optimal 
solutions to some classical flexural problems of plates, 
when such plates are laminates composed of anisotropic 
identical plies.
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A second task was that of assessing the influence of the 
anisotropy of the material on the optimal solutions so 
found: this is the topic of this talk.

Dimensionless invariant material properties have been 
chosen to represent the layer elastic properties, along with 
other dimensionless parameters describing geometry, 
deformation and/or loading.

Some unattended features and pathological cases have 
been so found.



4

Content

Governing equations
Dimensionless design parameters
A common problem for bending, buckling and vibrations
Analysis of the objective function
Effectiveness of the optimal solution
Bounds on optimal and anti-optimal solutions
The case of a non-sinusoidal load
The optimal critical load of buckling
The optimal fundamental frequency
Some examples of exact optimal solutions



5

Governing equations: the mechanical model

Simply supported rectangular laminate made of identical 
layers.
Classical lamination theory (Kirchhoff model etc.).

Bending stiffness tensor:

















=









κ
ε

DB
BA

M
N o

∑ == pn
j jj

p
δd

n
h

13

3
),(

12
1 QD

.and)2(34)1(12 1
3∑ = =+++−−= pn

j pjpppj ndnnnjjd

b

a
x

y h

z
np

1

...

.
DDD
DDD
DDD

ssysxs

ysyyxy

xsxyxx

















=D



6

Governing equations: supplementary assumptions

In order to dispose of an analytical solution, the laminate is 
assumed to be specially orthotropic in bending:

B=O;   Dxs=Dys=0.

In this way, the equilibrium equation for deflection w is not 
coupled to the equations of in-plane displacements and the 
separation of variables is possible: the Navier's method can 
be applied. 

For buckling, a further assumption is that 

N=(Nx, Ny, 0)

i.e. no shearing in-plane forces (if not, the Navier's method 
does  not apply).
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Governing equations: transverse equilibrium equation

[ ] equation; mequilibriu)(33 →= zpwL
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Governing equations: Navier's solution method

[ ].sinsinsin),(

,sinsin),(

1,

1,

∑

∑
∞

=

∞
=

=

=

nm mnmn

nm mnz

t
b
yn

a
xmayxw

b
yn

a
xmpyxp

ωππ

ππ

center. the in  load edconcentrat a for
2

sin
2

sin and4

, load uniform a for1 and16

with,

*

*
2

*

Pnmp

ab
Pp

mn
p

p
ab
Pp

mn

mn

mnmn

ππψ

π
ψ

ψ

==

===

=

n

m

a
b

x

y



9

Governing equations: polar parameters of the material

Φ0−Φ1=k π/4, k=0, 1: common orthotropy
R0=0: R0-orthotropy
R1=0: square symmetric orthotropy
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Governing equations: laminate bending stiffness

Separation of geometry (lamination parameters) and 
material (polar constants):

Specially orthotropic laminates: ξ0 and ξ1 are sufficient to 
completely describe bending stiffness.
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Governing equations: polar form of the equations

Separation of the mean isotropic part from the pure 
anisotropic part:

Mean isotropic part: meaning of the polar isotropy 
constants
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Dimensionless parameters: material

ρ : anisotropy ratio: ρ =0, R0-orthotropic materials;
ρ =∞ : square-symmetric materials. 

τ : isotropy-to-anisotropy ratio; τ >1
k: orthotropy index; k=0 : low shear modulus orthotropy

k=1 : high shear modulus orthotropy
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Dimensionless parameters: Cartesian expression

For a generic orthotropic elasticity tensor T it is:
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Dimensionless parameters: geometry and mode

Aspect ratio:

Mode ratio:

Wave-length ratio:                     .

Force ratio:

If m=n, χ=0 → χ=1 → χ=∞ →
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A common problem for bending, buckling and 
vibrations: bending stiffness

Maximization of the bending stiffness= minimization of the 
compliance JD

Navier's solution of equilibrium equation

Replacing the Dij by their polar expressions we get 
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A common problem for…: bending stiffness

Using the dimensionless parameters above, we get

with 

Further simplification: for a material, geometry and a 
sinusoidal load given (i.e. for fixed m and n), the 
optimization problem is reduced to the maximization of the 
function ϕ(ξ0, ξ1).
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A common problem for…: buckling loads

Be N=λ (Nx, Ny, 0), λ = load multiplier. 
We want to maximise λmn, the buckling load multiplier for 
the mode (m, n). 
The Navier's non-trivial solution of the buckling equation for 
the mode (m, n) is

Once again, replacing the Dij by their polar expressions and 
using the dimensionless parameters above, we get
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A common problem for…: natural frequencies

Finally, we consider the problem of maximising the natural 
frequency ωmn of a given mode (m, n). 
The Navier's non-trivial solution of the vibration equation for 
the mode (m, n) is

µ: mass of the laminate per unit area of the plate's surface.
As usual, replacing the Dij by their polar expressions and 
using the dimensionless parameters above, we get
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A common problem for…: the objective function

Finally, the three problems above, concerning the flexural 
behaviour of the laminate for a precise mode, are reduced 
to the same non linear optimization problem:

To remark that also the opposite problem (that we will call 
the anti-optimization one) is physically meaningful, as the 
objective function can be proved to be always positive:
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Analysis of the objective function: separation of material 
and mode

We rewrite the objective function ϕ as

The functions c0(χ) and c1(χ) give the influence of the mode 
and geometry. Their roots are of some importance.

ρ, τ and k give the influence of the material
τ : gives the influence of the ply's isotropy
ρ : gives the influence of the ply's anisotropy
k : gives the influence of the orthotropy's type
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Analysis of the objective function: pathological solutions

ϕ(ξ0,ξ1) is linear with respect to ξ0, ξ1 → maxima and 
minima are located on the boundary of the feasible domain.
Nonetheless, it is useful to analyse the gradient of ϕ(ξ0,ξ1):

∇ϕ(ξ0,ξ1)=0 ↔

ρ=0 and χ=1: this is the case of laminates made of R0 -
orthotropic materials (R0=0) and with equal wave-
length of the mode along x and y, (e.g.  square 
plates and modes with m=n);

or
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Analysis of the objective function: pathological solutions

ρ=∞ and            : this is the case of laminates made of 
square-symmetric materials (R1=0), i.e. reinforced by 
balanced fabrics, and, if for instance m=n, having an
aspect ratio              . 

In these two circumstances, it is not possible to optimize 
the laminate, because the objective function is constant 
and reduces to only its isotropic part, τ.  
Actually, in such cases, the contribution of the anisotropic 
part disappears, due to special combinations of geometry, 
mode and anisotropy properties of the layer: the laminate 
behaves like it was made of isotropic layers, and any 
possible stacking sequence give the same result.

12 ±=χ

12 ±=η
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Analysis of the objective function: cross-ply solutions

Cross-ply laminates are represented by lamination points of 
the type ξ0=1, −1≤ ξ1≤1; this is possible ↔

For the anti-optimal problem, it is sufficient in the first 
condition above to change k=0 into k=1 and vice-versa, i.e., 
k changes maxima into minima and vice-versa: this is 
typical.
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Analysis of the objective function: cross-ply solutions

A remark: cross-ply solutions exist only in the presence of a 
generalised square-symmetry: of the material, condition     
ρ =∞, or of the geometry and mode, condition χ=1 (e.g., 
m=n and a square plate). 
The values of the solutions are 

To notice that in the first case ρ influences the extreme 
values, while χ in the second:
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Analysis of the objective function: cross-ply solutions

Optimal and anti-optimal cross-ply solutions are not unique, 
as ξ1 disappears from the different expressions above: any 
laminate combination of layers at 0° and at 90° is an 
optimal (or anti-optimal) solution if conditions above are 
satisfied.
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Analysis of the objective function: angle-ply solutions

Angle-ply laminates are located on the boundary 
of the feasible domain, where

whose maxima and minima can be only 
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Analysis of the objective function: angle-ply solutions

The corresponding orientation angles δ are 

with

Remark: it is easy to verify that for two plates having 
reciprocal wave-length ratios, the respective solution 
angles δ are complementary.
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Analysis of the objective function: angle-ply solutions

Angle-ply solutions exist ↔
This conditions give link the influence of the material part to 
that of the mode on the existence of angle-ply optimal 
laminates:
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Analysis of the objective function: angle-ply solutions

Once more k changes minima into maxima:

In particular, using the expression of c0(χ) we find that

Remark: the isotropy parameter τ does not affect the 
solution.
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Analysis of the objective function: map of the solutions

Considering the hierarchy of ϕ11, ϕ22 and ϕδδ we see that

Crossing all these results, we can trace a map of the 
optimal and anti-optimal solutions in the plane (ρ, χ):
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Analysis of the objective function: map of the solutions
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Effectiveness of the optimal solution

It is interesting to evaluate the gain of the true (angle-ply) 
optimal or anti-optimal solution with respect to the intuitive
(unidirectional) one, i.e. the ratios 
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Effectiveness of the optimal solution: extreme value

These ratios get their extreme value for ρ →∞ and χ=0, χ=1 
or χ→∞, i.e., if m=n, for square plates or infinite strips 
composed by square symmetric layers (R1=0):

The effectiveness of the 
solution is determined by 
the value of τ.
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Effectiveness of the optimal solution: real materials

It can be shown that materials with k=1 are less diffused 
than those with k=0, but they do exist.

Apart from square symmetric layers, ρ =∞, the most part of 
composite layers have ρ<1 and k=0 → only the left part of 
the map of solutions is usually of concern. 
If ρ<1, the range of χ where optimisation is meaningful, i.e. 
where the solution is not 0° or 90°, increases with ρ and, for 
ρ=1, it is comprised between               and           . 

For current materials (ρ≈1, k=0), it is ζmax=2.

Some examples of materials are in the following table:

31=χ 3=χ
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Effectiveness of the optimal solution: real materials

(modules in GPa)

 

Material Fir wood Ice Titanium-
Boride TiB2 

Boron-epoxy 
B(4)-55054    

Carbon-epoxy 
T300-5208    

Kevlar-epoxy 
149 

S-Glass-epoxy 
S2-449/SP 

381 

Glass-epoxy 
balanced 

fabric 

Braided 
carbon-epoxy 

BR45a 

Braided 
carbon-epoxy 

BR60 

Reference Lekhnitskii, 
1950 

Cazzani & 
Rovati,  
2003 

Cazzani & 
Rovati,  
2003 

Tsai & Hahn, 
1980 

Tsai & Hahn, 
1980 

Daniel & 
Ishai,  
1994 

MIL-HDBK-
17-2F,  
2002 

Daniel & 
Ishai,  
1994 

Falzon & 
Herszberg, 

1998 

Falzon & 
Herszberg, 

1998 
E1 10 11.75 387.60 205.00 181.00 86.90 47.66 29.70 40.40 30.90 
E2 0.42 9.61 253.81 18.50 10.30 5.52 13.31 29.70 19.60 42.60 
G12 0.75 3.00 250.00 5.59 7.17 2.14 4.75 5.30 25.00 14.00 
ν12 0.01 0.27 0.44 0.23 0.28 0.34 0.27 0.17 0.75 0.34 
Q11 10 12.51 445.62 206.00 181.81 87.54 48.65 30.58 55.56 36.76 
Q22 0.42 10.22 291.80 18.59 10.35 5.56 13.59 30.58 26.96 50.68 
Q66 0.75 3.00 250.00 5.59 7.17 2.14 4.75 5.30 25 14.00 
Q12 0.004 2.78 130.12 4.27 2.89 1.89 3.67 5.20 20.22 17.23 
T0 1.68 3.65 184.65 29.80 26.88 12.23 92.38 8.99 17.76 13.62 
T1 1.30 3.54 124.71 29.14 24.74 12.11 86.97 8.94 15.37 15.24 
R0 0.93 0.65 65.35 24.21 19.71 10.09 44.86 3.70 7.24 0.38 
R1 1.19 0.28 19.23 23.42 21.43 10.25 43.82 0 3.57 1.74 
Φ0 0 0 π/4 0 0 0 0 0 π/4 π/4 
Φ1 0 0 0 0 0 0 0 0 0 π/2 
k 0 0 1 0 0 0 0 0 1 (−)1 
ρ 0.78 2.32 3.40 1.03 0.92 0.98 1.02 ∞ 2.03 0.22 
τ 2.83 15.16 6.37 2.61 2.62 2.53 4.25 7.26 6.01 24.76 
Vf - - - 0.50 0.70 0.60 0.50 0.45 0.60 0.60 
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Bounds on optimal and anti-optimal solutions

We consider the influence of ρ and χ upon ϕmax and ϕmin, 
i.e. we look for the curves χ=χ(ρ) in the plane (ρ, χ) where 
the surfaces ϕ11, ϕ22 and ϕδδ have a local or absolute 
maximum (minimum) with respect to χ: 

These curves are:
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Bounds on optimal and anti-optimal solutions
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Bounds on optimal and anti-optimal solutions

Comparison with qxx(θ):

So, actually ϕ is similar to qxx(θ), the isotropic part is the 
same (τ), and only functions c0(χ) and c1(χ) introduce the 
influence of geometry and mode in ϕ. In particular, the 
maximum and minimum can be only

also similar to ϕ11, ϕ22 and ϕδδ.
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Bounds on optimal and anti-optimal solutions

In particular, we have that the extreme values of ϕ and 
qxx(θ) are equal on some of the preceding curves:

To complete the comparison with ϕ, let us introduce the 
following intermediate values of qxx(θ):
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Bounds on optimal and anti-optimal solutions

The diagrams of ϕa, the anisotropic part of the optimal 
solution:

χ 
ρ 

ϕa 

χ 
ρ ϕa

a) k=0, optimal solution                                        b) k=0,  anti-optimal solution

c) k=1, optimal solution                                        d) k=1,  anti-optimal solution
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Bounds on optimal and anti-optimal solutions

Remark: q11, q22 and qθθ, bound the optimal and anti-
optimal values of ϕ(ξ0, ξ1), ϕ11, ϕ22 and ϕδδ.

So, global maxima and minima can be taken only for χ =0, 
χ→∞,          and         , while local maxima and minima only 
for χ=1 and on      to     .

In addition, χ=1 and      to      can be absolute maxima of 
the anti-optimal solution and absolute minima of the optimal 
solution.

Finally, the optimal and anti-optimal values of the objective 
function, can be interpreted as a sort of normal stiffness, 
that takes its highest or lowest possible value in some 
special cases.
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The case of a non-sinusoidal load

In this case the problem of stiffness maximization is

Now, the objective function is no more linear and the 
isotropic part, τ, influences the location of the solution.
Nevertheless, being

the solution is again on the boundary (except some 
pathological situations, see below)
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The case of a non-sinusoidal load

A fundamental question is : if we consider the case m=n=1, 
for which we can find the solution as seen, how much does 
the optimal solution change when the whole series is 
considered? To evaluate this, we introduce the ratio

It can be seen that for m→∞, σ→0 ∀γ; in addition, for γ=1, 
i.e. if m=n, then

For instance, for a uniform load σ =1/m8, viz. the term 
m=n=3 is 1/6561≈1.5 ×10-4 the first term, while for a 
concentrated load it is 1/324≈3.1 ×10-3. 
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The case of a non-sinusoidal load

Generally, though not quite identical, optimal solutions for a 
generic load do not differ substantially form those found for 
a sinusoidal load; this means also that optimal solutions for 
buckling and natural frequencies for χ=η are similar to 
those of bending stiffness for a generic load.

(mmax=nmax=50)

Optimal 
orientation 

angle δ 
Fir wood 

Boron-
epoxy 
B(4)-
55054    

Carbon-
epoxy 

T300-5208   

Glass-
epoxy 

balanced 
fabric 

Braided 
carbon-
epoxy 
BR45a 

 η=1.2 η=6.0 
δsin 52.16° 50.40° 51.05° 45° 70.64° 
δunif 51.86° 50.22° 50.82° 45° 75.68° 
δconc 49.52° 48.65° 48.92° 45° 90.00° 

δuni f − δsin −0.30° −0.18° −0.23° 0° 5.04° 
δconc − δsin −2.66° −1.75° −2.12° 0° 19.36° 
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The case of a non-sinusoidal load: pathological solutions

The previous pathological solutions do not exist, as χ
changes with m and n. 
Nevertheless, if ρ =0, functions ϕ and ϕT do not depend 
upon ξ0. In such a case, ∇ϕT can be null along a line 
parallel to the ξ0 axis. 

 

ξ0 ξ1

ϕΤ 

For η=1,possible solutions are a 
balanced cross-ply laminate as 
well as an angle-ply with δ=45°, 
but also any other laminate of 
the type (ξ1=0, −1≤ ξ0≤1), for 
instance isotropic laminates in 
bending(ξ1=0, ξ0=0).
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The case of a non-sinusoidal load: pathological solutions

The other case is ρ →∞; ϕ and ϕT do not depend upon ξ1.
∇ϕT=0 for ξ0=±1, that is for an angle ply with δ=45°, if k=0, 
or for a cross-ply laminate, if k=1. 
As for a sinusoidal load, all the cross-ply laminates are 
possible solutions, if k=1.

ξ0 ξ1

ϕΤ 

ξ0 ξ1

ϕΤ 
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The optimal critical load of buckling

The problem is to determine the mode (m, n) that leads to 
the lowest buckling load.
To this purpose, we consider the ratio

where λa is the buckling load for m=ma, n=na, and λb for 
m=mb, n=nb; ϕa is ϕ calculated for η/γa and ϕb for η/γb.

If γa=γb, then            → we can consider mb=nb=1 and

analyse what happens for a given ma and for γa≠1.
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The optimal critical load of buckling

The two buckling loads mb=nb=1 and (ma, na) can be found 
and ε computed; so, for a given plate and mode (ma), we 
can trace the surface representing ε(γa, ν) and look when it 
is lower or greater than 1. The curves separating the 
domains can be put in explicit form; they are:

b1 → solution of ε →∞: 

b2 → solution of ε=1: 

b3 → trivial solution γa=1 if ma=1.
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The optimal critical load of buckling

The areas where ε>1 are those where the buckling load of 
the case a is greater than the one of the case b.
In this way all the significant cases can be easily verified.

Examples: carbon-epoxy, τ=2.62, ρ=0.92, k=0 (ε>1 in blue).

η=1.2, ma=2

γa

ν η=1.7, ma=2

γa

νη=0.6, ma=1

γa

ν
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The optimal fundamental frequency

Like for the critical load, the problem is to determine the 
mode (m, n) that leads to the lowest natural frequency.

To this purpose, we consider the ratio

where ωa is the natural frequency for m=ma, n=na, and ωb
for m=mb, n=nb; ϕ(χ) is ϕ calculated for χ=η/γb and ϕ(χ∗) for 
χ∗=η/γa=χ/γ∗, where γ∗=γa/γb and m∗=ma/mb. 
We can trace the curve                   and see where        .
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The optimal fundamental frequency

The equation of the curve is simply

Examples: carbon-epoxy, τ=2.62, ρ=0.92, k=0 (ϖ>1 in 
blue).
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Some examples of exact optimal solutions

A simple strategy for obtaining exact specially orthotropic 
laminates in bending: to choose a quasi-homogeneous 
solution (A/h=12D/h3, B=O) of the quasi-trivial set.
This ensures that for the angle-ply laminate will be not only 
B=O, but also Dxs=Dys=0 as they are equal to Axs and Ays
which are automatically null for angle-ply laminates. 
So, for this class of laminates, the Navier's solutions are 
exact.

Example 1: carbon-epoxy laminate, τ=2.62, ρ=0.92, k=0, 
η=1.2, γ=1, ν=1.
As 1<χ=1.2<χ3=1.70 and k=0, the optimal value of the 
objective function is ϕmax=ϕδδ=3.31.



53

Some examples of exact optimal solutions

The solution angle is δ=51°.

The gain with respect to the intuitive solution ϕ22=2.57 is 
ζmax=1.29. 

The optimal solution for bending stiffness in case of uniform 
load is δ=50.8° and for concentrated load 48.9°. 

Example 2: braided carbon-epoxy BR45a laminate, τ=6.01, 
ρ=2.03, k=1, η=10, γ=1, ν=1.

As χ=10>χ4=3.40, ρ>1 and k=1, the optimal value of the 
objective function is ϕmax=ϕδδ=7.29.
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Some examples of exact optimal solutions

The solution angle is δ=60.8°.

The gain with respect to the intuitive solution ϕ22=6.06 is 
ζmax=1.2. 

The optimal solution for bending stiffness in case of uniform 
load is δ=61.5° and for concentrated load 65.9°. 

Possible exact (unsymmetrical) solutions: 
8 plies: [δ, −δ, −δ, δ, −δ, δ, δ, −δ]
12 plies: [δ,  −δ,  δ,  −δ3,  δ3,  −δ,  δ,  −δ]
16 plies: [δ,  −δ,  δ,  −δ2,  δ, −δ2, δ4, −δ3, δ] etc.
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Conclusion

The design analysis made with dimensionless invariant 
parameters helps in some way the understanding of the 
flexural problems in presence of anisotropy: it puts in 
evidence some pathological situations and characterizes 
the localization of the different types of optimal solutions as 
well as their effectiveness.

This study is merely qualitative, but can help in similar 
studies with other geometries and conditions.

Thank you very much for your attention.


